更改

跳到导航 跳到搜索
添加3,881字节 、 2021年1月27日 (三) 01:11
第1,621行: 第1,621行:  
As the curvature increases, the amplitude of the wave alternates between positive and negative more rapidly, and also shortens the wavelength. So the inverse relation between momentum and wavelength is consistent with the energy the particle has, and so the energy of the particle has a connection to a wave, all in the same mathematical formulation.<ref name="Quanta 1974"/>
 
As the curvature increases, the amplitude of the wave alternates between positive and negative more rapidly, and also shortens the wavelength. So the inverse relation between momentum and wavelength is consistent with the energy the particle has, and so the energy of the particle has a connection to a wave, all in the same mathematical formulation.<ref name="Quanta 1974"/>
   −
===Wave and particle motion===
+
===Wave and particle motion波与质点运动===
    
The Schrödinger equation can also be derived from a first order form similar to the manner in which the Klein–Gordon equation can be derived from the Dirac equation. In 1D the first order equation is given by
 
The Schrödinger equation can also be derived from a first order form similar to the manner in which the Klein–Gordon equation can be derived from the Dirac equation. In 1D the first order equation is given by
第1,648行: 第1,648行:     
   | caption1  = Increasing levels of [[wavepacket]] localization, meaning the particle has a more localized position.
 
   | caption1  = Increasing levels of [[wavepacket]] localization, meaning the particle has a more localized position.
 +
 +
|caption1=增加[[wavepacket]]局部化水平,意味着粒子的位置更加局部化。
    
\end{align}
 
\end{align}
第1,662行: 第1,664行:     
   | caption2  = In the limit ''ħ'' → 0, the particle's position and momentum become known exactly. This is equivalent to the classical particle.
 
   | caption2  = In the limit ''ħ'' → 0, the particle's position and momentum become known exactly. This is equivalent to the classical particle.
 +
 +
|caption2=在极限“ħ”→0时,粒子的位置和动量变得精确。这相当于经典粒子。
    
This equation allows for the inclusion of spin in nonrelativistic quantum mechanics. Squaring the above equation yields the Schrödinger equation in 1D. The matrices <math> \eta </math> obey the following properties
 
This equation allows for the inclusion of spin in nonrelativistic quantum mechanics. Squaring the above equation yields the Schrödinger equation in 1D. The matrices <math> \eta </math> obey the following properties
   −
这个方程考虑了自旋在非相对论量子力学中的包含。将上面的方程平方,就得到了一维的薛定谔方程。矩阵服从以下性质
+
这个方程允许在非相对论量子力学中包含自旋。将上述方程平方得到一维薛定谔方程。矩阵<math>\eta</math>遵循以下性质
    
   | width2    = 150
 
   | width2    = 150
第1,682行: 第1,686行:     
Schrödinger required that a [[wave packet]] solution near position <math>\mathbf{r}</math> with wave vector near <math>\mathbf{k}</math> will move along the trajectory determined by classical mechanics for times short enough for the spread in <math>\mathbf{k}</math> (and hence in velocity) not to substantially increase the spread in {{math|'''r'''}}. Since, for a given spread in {{math|'''k'''}}, the spread in velocity is proportional to Planck's constant <math>\hbar</math>, it is sometimes said that in the limit as <math>\hbar</math> approaches zero, the equations of classical mechanics are restored from quantum mechanics.<ref name="Analytical Mechanics 2008">''Analytical Mechanics'', L. N. Hand, J. D. Finch, Cambridge University Press, 2008, {{isbn|978-0-521-57572-0}}</ref> Great care is required in how that limit is taken, and in what cases.
 
Schrödinger required that a [[wave packet]] solution near position <math>\mathbf{r}</math> with wave vector near <math>\mathbf{k}</math> will move along the trajectory determined by classical mechanics for times short enough for the spread in <math>\mathbf{k}</math> (and hence in velocity) not to substantially increase the spread in {{math|'''r'''}}. Since, for a given spread in {{math|'''k'''}}, the spread in velocity is proportional to Planck's constant <math>\hbar</math>, it is sometimes said that in the limit as <math>\hbar</math> approaches zero, the equations of classical mechanics are restored from quantum mechanics.<ref name="Analytical Mechanics 2008">''Analytical Mechanics'', L. N. Hand, J. D. Finch, Cambridge University Press, 2008, {{isbn|978-0-521-57572-0}}</ref> Great care is required in how that limit is taken, and in what cases.
 +
 +
薛定谔要求一个靠近位置<math>\mathbf{r}</math>的[[wave packet]]解,其波矢量在<math>\mathbf{k}</math>附近,将沿着经典力学确定的轨迹移动足够短的时间,以使<math>\mathbf{k}</math>中的传播(因此在速度上)不会实质性地增加<math>\mathbf{k}</math>中的传播{{数学|''r''}}。因为,对于{math |''k''}中的给定扩散,速度扩散与普朗克常数成正比,所以有时有人说,当<math>\hbar</math>接近零时,经典力学的方程就从量子力学中恢复了。<ref name=“analytic mechanics 2008”>“analytic mechanics”,五十、 N.Hand,J.D.Finch,剑桥大学出版社,2008,{isbn | 978-0-521-57572-0}</ref>在如何确定极限以及在何种情况下,需要非常小心。
    
\eta^2=0  \\
 
\eta^2=0  \\
第1,694行: 第1,700行:     
The limiting short-wavelength is equivalent to <math>\hbar</math> tending to zero because this is limiting case of increasing the wave packet localization to the definite position of the particle (see images right). Using the [[Heisenberg uncertainty principle]] for position and momentum, the products of uncertainty in position and momentum become zero as <math>\hbar \longrightarrow 0</math>:
 
The limiting short-wavelength is equivalent to <math>\hbar</math> tending to zero because this is limiting case of increasing the wave packet localization to the definite position of the particle (see images right). Using the [[Heisenberg uncertainty principle]] for position and momentum, the products of uncertainty in position and momentum become zero as <math>\hbar \longrightarrow 0</math>:
 +
 +
极限短波长相当于趋向于零的<math>\hbar</math>,因为这是将波包局部化增加到粒子的确定位置的极限情况(见右图)。使用[[Heisenberg测不准原理]]计算位置和动量,位置和动量的不确定度乘积变为零,如<math>\hbar\longrightarrow 0</math>:
    
\left\lbrace \eta, \eta^\dagger \right\rbrace= 2 I
 
\left\lbrace \eta, \eta^\dagger \right\rbrace= 2 I
  −
左左左左左右左左左右左左左右右右右右右右右左左左左右右右右右右右右右右右右右右右右右右右右右右右右右右右右右右左左左右右右右右右右右右右右右右右右右右右右右右右右右右左左左右右右右右右右右右右右右右右右
        第1,703行: 第1,709行:  
\end{align}
 
\end{align}
   −
结束{ align }
      
:<math> \sigma(x) \sigma(p_x) \geqslant \frac{\hbar}{2} \quad \rightarrow \quad \sigma(x) \sigma(p_x) \geqslant 0 \,\!</math>
 
:<math> \sigma(x) \sigma(p_x) \geqslant \frac{\hbar}{2} \quad \rightarrow \quad \sigma(x) \sigma(p_x) \geqslant 0 \,\!</math>
第1,709行: 第1,714行:  
</math>
 
</math>
   −
数学
            
where {{math|''σ''}} denotes the (root mean square) [[measurement uncertainty]] in {{math|''x''}} and {{math|''p<sub>x</sub>''}} (and similarly for the {{math|''y''}} and {{math|''z''}} directions) which implies the position and momentum can only be known to arbitrary precision in this limit.
 
where {{math|''σ''}} denotes the (root mean square) [[measurement uncertainty]] in {{math|''x''}} and {{math|''p<sub>x</sub>''}} (and similarly for the {{math|''y''}} and {{math|''z''}} directions) which implies the position and momentum can only be known to arbitrary precision in this limit.
 +
 +
其中{math |''σ'}表示{math |''x'}和{math |''p<sub>x</sub>'}方向上的(均方根)[[测量不确定度]],这意味着位置和动量只能在该极限下以任意精度已知。
    
The 3 dimensional version of the equation is given by
 
The 3 dimensional version of the equation is given by
第1,722行: 第1,728行:     
One simple way to compare classical to quantum mechanics is to consider the time-evolution of the ''expected'' position and ''expected'' momentum, which can then be compared to the time-evolution of the ordinary position and momentum in classical mechanics. The quantum expectation values satisfy the [[Ehrenfest theorem]]. For a one-dimensional quantum particle moving in a potential <math>V</math>, the Ehrenfest theorem says<ref>{{harvnb|Hall|2013}} Section 3.7.5</ref>
 
One simple way to compare classical to quantum mechanics is to consider the time-evolution of the ''expected'' position and ''expected'' momentum, which can then be compared to the time-evolution of the ordinary position and momentum in classical mechanics. The quantum expectation values satisfy the [[Ehrenfest theorem]]. For a one-dimensional quantum particle moving in a potential <math>V</math>, the Ehrenfest theorem says<ref>{{harvnb|Hall|2013}} Section 3.7.5</ref>
 +
 +
比较经典力学和量子力学的一个简单方法是考虑“预期”位置和“预期”动量的时间演化,然后可以将其与经典力学中普通位置和动量的时间演化进行比较。量子期望值满足[[Ehrenfest定理]]。Ehrenfest定理说,对于一维量子粒子在势中运动<ref>{{harvnb|Hall|2013}} Section 3.7.5</ref>
    
<math display="block">
 
<math display="block">
第1,731行: 第1,739行:  
\begin{align}
 
\begin{align}
   −
开始{ align }
      
Although the first of these equations is consistent with the classical behavior, the second is not: If the pair <math>(\langle X\rangle,\langle P\rangle)</math> were to satisfy Newton's second law, the right-hand side of the second equation would have to be
 
Although the first of these equations is consistent with the classical behavior, the second is not: If the pair <math>(\langle X\rangle,\langle P\rangle)</math> were to satisfy Newton's second law, the right-hand side of the second equation would have to be
 +
 +
尽管这些方程中的第一个与经典行为一致,但第二个却不一致:如果这对<math>(\langle X\rangle,\langle P\rangle)</math>要满足牛顿第二定律,第二个方程的右边就必须是
    
-i \gamma_i \partial_i \psi = (i  \eta \partial_t  + \eta^\dagger m) \psi  
 
-i \gamma_i \partial_i \psi = (i  \eta \partial_t  + \eta^\dagger m) \psi  
第1,743行: 第1,752行:  
\end{align}
 
\end{align}
   −
结束{ align }
      
which is typically not the same as <math>-\left\langle V'(X)\right\rangle</math>. In the case of the quantum harmonic oscillator, however, <math>V'</math> is linear and this distinction disappears, so that in this very special case, the expected position and expected momentum do exactly follow the classical trajectories.
 
which is typically not the same as <math>-\left\langle V'(X)\right\rangle</math>. In the case of the quantum harmonic oscillator, however, <math>V'</math> is linear and this distinction disappears, so that in this very special case, the expected position and expected momentum do exactly follow the classical trajectories.
 +
 +
通常与<math>-\left\langle V'(X)\right\rangle不同。然而,在量子谐振子的情况下,<math>V'</math>是线性的,这种区别消失了,所以在这个非常特殊的情况下,期望位置和期望动量确实遵循经典轨迹。
    
</math>
 
</math>
  −
数学
         +
For general systems, the best we can hope for is that the expected position and momentum will ''approximately'' follow the classical trajectories. If the wave function is highly concentrated around a point <math>x_0</math>, then <math>V'\left(\left\langle X\right\rangle\right)</math> and <math>\left\langle V'(X)\right\rangle</math> will be ''almost'' the same, since both will be approximately equal to <math>V'(x_0)</math>. In that case, the expected position and expected momentum will remain very close to the classical trajectories, at least for as long as the wave function remains highly localized in position.<ref>{{harvnb|Hall|2013}} p. 78</ref> When Planck's constant is small, it is possible to have a state that is well localized in ''both'' position and momentum. The small uncertainty in momentum ensures that the particle ''remains'' well localized in position for a long time, so that expected position and momentum continue to closely track the classical trajectories.
   −
For general systems, the best we can hope for is that the expected position and momentum will ''approximately'' follow the classical trajectories. If the wave function is highly concentrated around a point <math>x_0</math>, then <math>V'\left(\left\langle X\right\rangle\right)</math> and <math>\left\langle V'(X)\right\rangle</math> will be ''almost'' the same, since both will be approximately equal to <math>V'(x_0)</math>. In that case, the expected position and expected momentum will remain very close to the classical trajectories, at least for as long as the wave function remains highly localized in position.<ref>{{harvnb|Hall|2013}} p. 78</ref> When Planck's constant is small, it is possible to have a state that is well localized in ''both'' position and momentum. The small uncertainty in momentum ensures that the particle ''remains'' well localized in position for a long time, so that expected position and momentum continue to closely track the classical trajectories.
+
对于一般系统,我们所能期望的最好结果是,预期的位置和动量将“近似”地遵循经典轨迹。如果波函数高度集中在一个点上,那么<math>V'\left(\left\langle x\right\rangle\right)</math><math>\left\langle V'(x)\right\rangle</math>将“几乎”相同,因为两者都将近似等于<math>V'(x\u 0)</math>。在这种情况下,预期位置和预期动量将保持非常接近经典轨迹,至少只要波函数在位置上保持高度局部化。<ref>{harvnb | Hall | 2013}p.78</ref>当普朗克常数很小时,有可能有一个状态在“位置和动量”都很好地局部化。动量的小不确定性确保了粒子在很长一段时间内“保持”良好的局部化位置,因此预期的位置和动量继续与经典轨迹密切相关。
    
Here <math> \eta=(\gamma_0+i \gamma_5)/\sqrt{2} </math> is a <math>4 \times 4</math> nilpotent matrix and <math> \gamma_i </math> are the Dirac gamma matrices (<math>i=1,2,3</math>). The Schrödinger equation in 3D can be obtained by squaring the above equation.  
 
Here <math> \eta=(\gamma_0+i \gamma_5)/\sqrt{2} </math> is a <math>4 \times 4</math> nilpotent matrix and <math> \gamma_i </math> are the Dirac gamma matrices (<math>i=1,2,3</math>). The Schrödinger equation in 3D can be obtained by squaring the above equation.  
第1,767行: 第1,776行:  
The Schrödinger equation in its general form
 
The Schrödinger equation in its general form
   −
 
+
薛定谔方程的一般形式
    
:<math> i\hbar \frac{\partial}{\partial t} \Psi\left(\mathbf{r},t\right) = \hat{H} \Psi\left(\mathbf{r},t\right) \,\!</math>
 
:<math> i\hbar \frac{\partial}{\partial t} \Psi\left(\mathbf{r},t\right) = \hat{H} \Psi\left(\mathbf{r},t\right) \,\!</math>
第1,775行: 第1,784行:  
is closely related to the [[Hamilton–Jacobi equation]] (HJE)
 
is closely related to the [[Hamilton–Jacobi equation]] (HJE)
   −
 
+
与[[汉密尔顿-雅可比方程]]密切相关(HJE)
    
:<math> -\frac{\partial}{\partial t} S(q_i,t) = H\left(q_i,\frac{\partial S}{\partial q_i},t \right) \,\!</math>
 
:<math> -\frac{\partial}{\partial t} S(q_i,t) = H\left(q_i,\frac{\partial S}{\partial q_i},t \right) \,\!</math>
第1,783行: 第1,792行:  
where <math>S</math> is the classical [[action (physics)|action]] and <math>H</math> is the [[Hamiltonian mechanics|Hamiltonian function]] (not operator). Here the [[generalized coordinates]] <math>q_i</math> for <math>i = 1, 2, 3</math> (used in the context of the HJE) can be set to the position in Cartesian coordinates as <math>\mathbf{r} = (q_1, q_2, q_3) = (x, y, z)</math>.<ref name="Analytical Mechanics 2008"/>
 
where <math>S</math> is the classical [[action (physics)|action]] and <math>H</math> is the [[Hamiltonian mechanics|Hamiltonian function]] (not operator). Here the [[generalized coordinates]] <math>q_i</math> for <math>i = 1, 2, 3</math> (used in the context of the HJE) can be set to the position in Cartesian coordinates as <math>\mathbf{r} = (q_1, q_2, q_3) = (x, y, z)</math>.<ref name="Analytical Mechanics 2008"/>
    +
其中,<math>S</math>是经典的[[作用(物理)|作用]],而<math>H</math>是[[哈密顿力学|哈密顿函数]](非算符)。这里,<math>i=1,2,3</math>的[[generalized coordinates]]<math>qu i</math>(在HJE上下文中使用)可以设置为笛卡尔坐标中的位置,如<math>\mathbf{r}=(qu 1,qu 2,qu 3)=(x,y,z)</math>。<ref name="Analytical Mechanics 2008"/>
       
Substituting
 
Substituting
   −
 
+
替代
    
:<math> \Psi = \sqrt{\rho(\mathbf{r},t)} e^{iS(\mathbf{r},t)/\hbar}\,\!</math>
 
:<math> \Psi = \sqrt{\rho(\mathbf{r},t)} e^{iS(\mathbf{r},t)/\hbar}\,\!</math>
第1,795行: 第1,805行:  
where <math>\rho</math> is the probability density, into the Schrödinger equation and then taking the limit <math>\hbar \longrightarrow 0</math> in the resulting equation yield the Hamilton–Jacobi equation.
 
where <math>\rho</math> is the probability density, into the Schrödinger equation and then taking the limit <math>\hbar \longrightarrow 0</math> in the resulting equation yield the Hamilton–Jacobi equation.
    +
其中,<math>\rho</math>是概率密度,放入薛定谔方程,然后在得到的方程中取极限值<math>\hbar\longrightarrow 0</math>,得到汉密尔顿-雅可比方程。
       
The implications are as follows:
 
The implications are as follows:
    +
其含义如下:
    +
* The motion of a particle, described by a (short-wavelength) wave packet solution to the Schrödinger equation, is also described by the Hamilton–Jacobi equation of motion.
   −
* The motion of a particle, described by a (short-wavelength) wave packet solution to the Schrödinger equation, is also described by the Hamilton–Jacobi equation of motion.
+
*粒子的运动由薛定谔方程的(短波长)波包解描述,也由哈密顿-雅可比运动方程描述。
    
* The Schrödinger equation includes the wave function, so its wave packet solution implies the position of a (quantum) particle is fuzzily spread out in wave fronts. On the contrary, the Hamilton–Jacobi equation applies to a (classical) particle of definite position and momentum, instead the position and momentum at all times (the trajectory) are deterministic and can be simultaneously known.
 
* The Schrödinger equation includes the wave function, so its wave packet solution implies the position of a (quantum) particle is fuzzily spread out in wave fronts. On the contrary, the Hamilton–Jacobi equation applies to a (classical) particle of definite position and momentum, instead the position and momentum at all times (the trajectory) are deterministic and can be simultaneously known.
   −
 
+
*薛定谔方程包含了波函数,所以它的波包解意味着(量子)粒子的位置在波前是模糊分布的。相反,哈密顿-雅可比方程适用于具有确定位置和动量的(经典)粒子,相反,任何时候的位置和动量(轨迹)都是确定的,并且可以同时知道。
    
==Nonrelativistic quantum mechanics==
 
==Nonrelativistic quantum mechanics==
561

个编辑

导航菜单