更改

跳到导航 跳到搜索
大小无更改 、 2021年1月30日 (六) 21:29
第137行: 第137行:     
The form of the Schrödinger equation depends on the physical situation (see below for special cases). The most general form is the time-dependent Schrödinger equation (TDSE), which gives a description of a system evolving with time:
 
The form of the Schrödinger equation depends on the physical situation (see below for special cases). The most general form is the time-dependent Schrödinger equation (TDSE), which gives a description of a system evolving with time:
 +
 
薛定谔方程的形式取决于物理情况(特殊情况见下文)。最普遍的形式是含时薛定谔方程(TDSE),它描述了系统随时间演化的过程:<ref name=Shankar1994>
 
薛定谔方程的形式取决于物理情况(特殊情况见下文)。最普遍的形式是含时薛定谔方程(TDSE),它描述了系统随时间演化的过程:<ref name=Shankar1994>
   第225行: 第226行:  
The term "Schrödinger equation" can refer to both the general equation, or the specific nonrelativistic version. The general equation is indeed quite general, used throughout quantum mechanics, for everything from the Dirac equation to quantum field theory, by plugging in diverse expressions for the Hamiltonian. The specific nonrelativistic version is a strictly classical approximation to reality and yields accurate results in many situations, but only to a certain extent (see relativistic quantum mechanics and relativistic quantum field theory).
 
The term "Schrödinger equation" can refer to both the general equation, or the specific nonrelativistic version. The general equation is indeed quite general, used throughout quantum mechanics, for everything from the Dirac equation to quantum field theory, by plugging in diverse expressions for the Hamiltonian. The specific nonrelativistic version is a strictly classical approximation to reality and yields accurate results in many situations, but only to a certain extent (see relativistic quantum mechanics and relativistic quantum field theory).
   −
术语“薛定谔方程”既可以指一般方程,也可以指特定的非相对论方程。通过插入哈密顿量的不同表达式,一般的方程确实是相当普遍的,贯穿了整个量子力学,适用于从狄拉克方程到量子场论的所有事物。特定的非相对论版本是一个严格的经典近似,在许多情况下产生精确的结果,但只是在一定程度上(见相对论量子力学和相对论量子场理论)。
+
术语“薛定谔方程”既可以指一般方程,也可以指特定的非相对论方程。通过插入哈密顿量的不同表达式,一般的方程确实是相当普遍的,贯穿了整个量子力学,适用于从狄拉克方程到量子场论的所有事物。特定的非相对论版本是一个严格的经典近似,但只是在一定程度上,在许多情况下产生精确的结果(见相对论量子力学和相对论量子场理论)。
   −
where <math>i</math> is the [[imaginary unit]], <math>\hbar = \frac{h}{2 \pi}</math> is the reduced [[Planck constant]] having the dimension of action,<ref>{{cite journal |author1=P. R. Bunker |author2=I. M. Mills |author3=Per Jensen  
+
where <math>i</math> is the [[imaginary unit]], <math>\hbar = \frac{h}{2 \pi}</math> is the reduced [[Planck constant]] having the dimension of action,
 +
其中,<math>i</math>是[[虚单位]],<math>\hbar=\frac{h}{2\pi}</math>是具有作用维数的约化[[普朗克常数]],<ref>{{cite journal |author1=P. R. Bunker |author2=I. M. Mills |author3=Per Jensen  
   −
其中,<math>i</math>是[[虚单位]],<math>\hbar=\frac{h}{2\pi}</math>是具有作用维数的约化[[普朗克常数]],<ref>{{cite journal  
+
<ref>{{cite journal  
    
|author1=P. R. Bunker |author2=I. M. Mills |author3=Per Jensen  
 
|author1=P. R. Bunker |author2=I. M. Mills |author3=Per Jensen  
第579行: 第581行:     
与衍射相关的粒子也表现出叠加和干涉现象。
 
与衍射相关的粒子也表现出叠加和干涉现象。
  −
      
==Implications启示==
 
==Implications启示==
561

个编辑

导航菜单