更改

跳到导航 跳到搜索
添加345字节 、 2021年1月30日 (六) 22:03
第1,020行: 第1,020行:  
where <math>S</math> is the classical action and <math>H</math> is the Hamiltonian function (not operator). Here the generalized coordinates <math>q_i</math> for <math>i = 1, 2, 3</math> (used in the context of the HJE) can be set to the position in Cartesian coordinates as <math>\mathbf{r} = (q_1, q_2, q_3) = (x, y, z)</math>.
 
where <math>S</math> is the classical action and <math>H</math> is the Hamiltonian function (not operator). Here the generalized coordinates <math>q_i</math> for <math>i = 1, 2, 3</math> (used in the context of the HJE) can be set to the position in Cartesian coordinates as <math>\mathbf{r} = (q_1, q_2, q_3) = (x, y, z)</math>.
   −
其中,s </math > 是经典动作,而 h </math > 是哈密顿函数(不是算符)。在这里,对于 < math > i = 1,2,3 </math > (在 HJE 上下文中使用) ,可以将广义坐标设置为笛卡尔坐标中的位置 < math > mathbf { r } = (q1,q2,q3) = (x,y,z) </math > 。
+
其中,<math>S</math> 是经典动作,而<math>H</math> 是哈密顿函数(不是算符)。在这里,对于 <math>i = 1, 2, 3</math> (在 HJE 上下文中使用) ,可以将广义坐标<math>q_i</math> 设置为笛卡尔坐标中的位置 <math>\mathbf{r} = (q_1, q_2, q_3) = (x, y, z)</math> 。
    
  |title=Hamilton's Analogy: Paths to the Schrödinger Equation
 
  |title=Hamilton's Analogy: Paths to the Schrödinger Equation
第1,042行: 第1,042行:       −
----> A modern version of his reasoning is reproduced below. The equation he found is:<ref name="verlagsgesellschaft1991">''Encyclopaedia of Physics'' (2nd Edition), R. G. Lerner, G. L. Trigg, VHC publishers, 1991, (Verlagsgesellschaft) 3-527-26954-1, (VHC Inc.) {{isbn|0-89573-752-3}}</ref>
+
----> A modern version of his reasoning is reproduced below. The equation he found is:
 +
 
 +
下面是他的推理的现代版本。他找到的方程式是:<ref name="verlagsgesellschaft1991">''Encyclopaedia of Physics'' (2nd Edition), R. G. Lerner, G. L. Trigg, VHC publishers, 1991, (Verlagsgesellschaft) 3-527-26954-1, (VHC Inc.) {{isbn|0-89573-752-3}}</ref>
    
where  is a function of all the spatial coordinate(s) of the particle(s) constituting the system only, and  is a function of time only.
 
where  is a function of all the spatial coordinate(s) of the particle(s) constituting the system only, and  is a function of time only.
第1,058行: 第1,060行:       −
However, by that time, [[Arnold Sommerfeld]] had [[Sommerfeld–Wilson quantization|refined the Bohr model]] with [[fine structure|relativistic corrections]].<ref>
+
However, by that time, [[Arnold Sommerfeld]] had [[Sommerfeld–Wilson quantization|refined the Bohr model]] with [[fine structure|relativistic corrections]].
 +
 
 +
然而,到那时,[[Arnold Sommerfeld]]已经[[Sommerfeld–Wilson量子化|改进了玻尔模型]]和[[fine structure |相对论修正]]。<ref>
    
<math> V(x_1,x_2,\ldots, x_N) = \sum_{n=1}^N V(x_n) \, .</math>
 
<math> V(x_1,x_2,\ldots, x_N) = \sum_{n=1}^N V(x_n) \, .</math>
第1,090行: 第1,094行:  
  |isbn=978-3-87144-484-5
 
  |isbn=978-3-87144-484-5
   −
}}</ref><ref>For an English source, see {{Cite journal
+
}}</ref><ref>For an English source, see 有关英文来源,请参阅{{Cite journal
    
  |last=Haar |first=T.
 
  |last=Haar |first=T.
第1,096行: 第1,100行:  
For no potential,  0}}, so the particle is free and the equation reads: and atoms or ions in lattices, and approximating other potentials near equilibrium points. It is also the basis of perturbation methods in quantum mechanics.
 
For no potential,  0}}, so the particle is free and the equation reads: and atoms or ions in lattices, and approximating other potentials near equilibrium points. It is also the basis of perturbation methods in quantum mechanics.
   −
因为没有势,0} ,所以粒子是自由的,方程是: 和晶格中的原子或离子,并且近似平衡点附近的其他势。这也是量子力学微扰法的基础。
+
因为没有势,0}},所以粒子是自由的,方程是: 和晶格中的原子或离子,并且近似平衡点附近的其他势。这也是量子力学微扰法的基础。
    
  |title=The Old Quantum Theory
 
  |title=The Old Quantum Theory
第1,128行: 第1,132行:  
where <math>n \in  \{0, 1, 2, \ldots \}</math>, and the functions <math>  \mathcal{H}_n </math> are the Hermite polynomials of order <math>  n </math>. The solution set may be generated by
 
where <math>n \in  \{0, 1, 2, \ldots \}</math>, and the functions <math>  \mathcal{H}_n </math> are the Hermite polynomials of order <math>  n </math>. The solution set may be generated by
   −
其中0,1,2,ldots </math > 中的 < math > n,而函数 < math > h } n </math > 是 < math > n </math > 的埃尔米特多项式。解决方案集可以由
+
其中<math>n \in  \{0, 1, 2, \ldots \}</math>,而函数 <math> \mathcal{H}_n </math> 是 <math> n </math> 的埃尔米特多项式。解决方案集可以由
    
<!-- <math>\frac{1}{c^2}\left(E + {e^2\over 4 \pi \varepsilon_0 r} \right)^2 \psi(x) = -\hbar^2 \nabla^2\psi(x) + \frac{m^2c^2}{\hbar^2} \psi(x).</math> ?-->
 
<!-- <math>\frac{1}{c^2}\left(E + {e^2\over 4 \pi \varepsilon_0 r} \right)^2 \psi(x) = -\hbar^2 \nabla^2\psi(x) + \frac{m^2c^2}{\hbar^2} \psi(x).</math> ?-->
第1,140行: 第1,144行:  
He found the standing waves of this relativistic equation, but the relativistic corrections disagreed with Sommerfeld's formula. Discouraged, he put away his calculations and secluded himself with a mistress in a mountain cabin in December 1925.<ref>{{Cite news|last=Teresi|first=Dick|date=1990-01-07|title=THE LONE RANGER OF QUANTUM MECHANICS (Published 1990)|language=en-US|work=The New York Times|url=https://www.nytimes.com/1990/01/07/books/the-lone-ranger-of-quantum-mechanics.html|access-date=2020-10-13|issn=0362-4331}}</ref>
 
He found the standing waves of this relativistic equation, but the relativistic corrections disagreed with Sommerfeld's formula. Discouraged, he put away his calculations and secluded himself with a mistress in a mountain cabin in December 1925.<ref>{{Cite news|last=Teresi|first=Dick|date=1990-01-07|title=THE LONE RANGER OF QUANTUM MECHANICS (Published 1990)|language=en-US|work=The New York Times|url=https://www.nytimes.com/1990/01/07/books/the-lone-ranger-of-quantum-mechanics.html|access-date=2020-10-13|issn=0362-4331}}</ref>
   −
他发现了这个相对论方程的驻波,但是相对论修正与索末菲公式不一致。1925年12月,他灰心丧气地放下算计,与一位情妇隐居在山间小屋里。<ref>{{Cite news|last=Teresi|first=Dick|date=1990-01-07|title=THE LONE RANGER OF QUANTUM MECHANICS (Published 1990)|language=en-US|work=The New York Times|url=https://www.nytimes.com/1990/01/07/books/the-lone-ranger-of-quantum-mechanics.html|access-date=2020-10-13|issn=0362-4331}}</ref>
+
他发现了这个相对论方程的驻波,但是相对论修正与索末菲公式不一致。1925年12月,他灰心丧气地放下计算,与一位情妇隐居在山间小屋里。<ref>{{Cite news|last=Teresi|first=Dick|date=1990-01-07|title=THE LONE RANGER OF QUANTUM MECHANICS (Published 1990)|language=en-US|work=The New York Times|url=https://www.nytimes.com/1990/01/07/books/the-lone-ranger-of-quantum-mechanics.html|access-date=2020-10-13|issn=0362-4331}}</ref>
    
The eigenvalues are
 
The eigenvalues are
第1,162行: 第1,166行:  
The case <math>  n = 0 </math> is called the ground state, its energy is called the zero-point energy, and the wave function is a Gaussian.
 
The case <math>  n = 0 </math> is called the ground state, its energy is called the zero-point energy, and the wave function is a Gaussian.
   −
这种情况下,n = 0 </math > 被称为基态,它的能量被称为零点能量,波函数是高斯函数。
+
这种情况下,<math>  n = 0 </math> 被称为基态,它的能量被称为零点能量,波函数是高斯函数。
    
  |url=http://gallica.bnf.fr/ark:/12148/bpt6k153811.image.langFR.f373.pagination
 
  |url=http://gallica.bnf.fr/ark:/12148/bpt6k153811.image.langFR.f373.pagination
第1,178行: 第1,182行:  
|bibcode = 1926AnP...384..361S }}</ref> In the equation, Schrödinger computed the [[hydrogen spectral series]] by treating a [[hydrogen atom]]'s [[electron]] as a wave <math>\Psi (\mathbf{x}, t)</math>, moving in a [[potential well]] <math>V</math>, created by the [[proton]]. This computation accurately reproduced the energy levels of the [[Bohr model]]. In a paper, Schrödinger himself explained this equation as follows:
 
|bibcode = 1926AnP...384..361S }}</ref> In the equation, Schrödinger computed the [[hydrogen spectral series]] by treating a [[hydrogen atom]]'s [[electron]] as a wave <math>\Psi (\mathbf{x}, t)</math>, moving in a [[potential well]] <math>V</math>, created by the [[proton]]. This computation accurately reproduced the energy levels of the [[Bohr model]]. In a paper, Schrödinger himself explained this equation as follows:
   −
在方程中,薛定谔通过将[[氢原子]]的[[电子]]视为波<math>\Psi(\mathbf{x},t)</math>,在[[质子]]产生的[[势阱]]<math>V</math>中移动来计算[[氢光谱系列]]。这个计算准确地再现了[[玻尔模型]]的能级。在一篇论文中,薛定谔本人对这个等式的解释如下:
+
在方程中,薛定谔通过将[[氢原子]]的[[电子]]视为波<math>\Psi (\mathbf{x}, t)</math>,在[[质子]]产生的[[势阱]]<math>V</math>中移动来计算[[氢光谱系列]]。这个计算准确地再现了[[玻尔模型]]的能级。在一篇论文中,薛定谔本人对这个等式的解释如下:
    
The Hamiltonian for one particle in three dimensions is:
 
The Hamiltonian for one particle in three dimensions is:
第1,268行: 第1,272行:  
<math>\nabla_n = \mathbf{e}_x \frac{\partial}{\partial x_n} + \mathbf{e}_y\frac{\partial}{\partial y_n} + \mathbf{e}_z\frac{\partial}{\partial z_n}\,,\quad \nabla_n^2 = \nabla_n\cdot\nabla_n = \frac{\partial^2}{{\partial x_n}^2} + \frac{\partial^2}{{\partial y_n}^2} + \frac{\partial^2}{{\partial z_n}^2}</math>
 
<math>\nabla_n = \mathbf{e}_x \frac{\partial}{\partial x_n} + \mathbf{e}_y\frac{\partial}{\partial y_n} + \mathbf{e}_z\frac{\partial}{\partial z_n}\,,\quad \nabla_n^2 = \nabla_n\cdot\nabla_n = \frac{\partial^2}{{\partial x_n}^2} + \frac{\partial^2}{{\partial y_n}^2} + \frac{\partial^2}{{\partial z_n}^2}</math>
   −
数学部分,数学部分,数学部分,数学部分,数学部分,4 nabla n ^ 2 = nabla n cndot nabla n = frac { partial ^ 2}{ partial x _ n } ^ 2} + frac { partial y _ n } ^ 2}{ partial y _ n } ^ 2} + frac { partial ^ 2}{{ partial z _ n }{{ partial z _ n }}{{ partial z _ n } ^ 2} ^ 2} </math >  
+
,4 nabla n ^ 2 = nabla n cndot nabla n = frac { partial ^ 2}{ partial x _ n } ^ 2} + frac { partial y _ n } ^ 2}{ partial y _ n } ^ 2} + frac { partial ^ 2}{{ partial z _ n }{{ partial z _ n }}{{ partial z _ n } ^ 2} ^ 2} </math >  
    
Louis de Broglie in his later years proposed a real valued [[wave function]] connected to the complex wave function by a proportionality constant and developed the [[De Broglie–Bohm theory]].
 
Louis de Broglie in his later years proposed a real valued [[wave function]] connected to the complex wave function by a proportionality constant and developed the [[De Broglie–Bohm theory]].
    +
Louis de Broglie在晚年提出了一个实值的[[波函数]]通过一个比例常数连接到复波函数,并发展了[[de Broglie–Bohm理论]]。
     
561

个编辑

导航菜单