更改

跳到导航 跳到搜索
大小无更改 、 2021年2月6日 (六) 18:39
无编辑摘要
第380行: 第380行:  
If <math> K </math> is not constant, and there is no correlation between the in-degrees and out-degrees, the conditions of stability is determined by <math> \langle K^{in}\rangle </math> The network is stable if <math>\langle K^{in}\rangle <K_{c}</math>, critical if  <math>\langle K^{in}\rangle =K_{c}</math>, and unstable if <math>\langle K^{in}\rangle >K_{c}</math>.
 
If <math> K </math> is not constant, and there is no correlation between the in-degrees and out-degrees, the conditions of stability is determined by <math> \langle K^{in}\rangle </math> The network is stable if <math>\langle K^{in}\rangle <K_{c}</math>, critical if  <math>\langle K^{in}\rangle =K_{c}</math>, and unstable if <math>\langle K^{in}\rangle >K_{c}</math>.
   −
如果 <math>K</math> 不是常数,且内度和外度之间没有相关性,则稳定性的条件由 <math>\langle K^{in}\rangle</math> 决定,如果 <math>\langle K^{in}/rangle <K_{c}</math> ,网络是稳定的。如果 <math>\langle K^{in}/rangle =K_{c}</math> ,则为临界;如果<math>\langle K^{in}/rangle >K_{c}</math> ,则为不稳定。
+
如果 <math>K</math> 不是常数,且内度和外度之间没有相关性,则稳定性的条件由 <math>\langle K^{in}\rangle</math> 决定,如果 <math>\langle K^{in}\rangle <K_{c}</math> ,网络是稳定的。如果 <math>\langle K^{in}\rangle =K_{c}</math> ,则为临界;如果<math>\langle K^{in}\rangle >K_{c}</math> ,则为不稳定。
    
The conditions of stability are the same in the case of networks with [[Scale-free network|scale-free]] [[network topology|topology]] where the in-and out-degree distribution is a power-law distribution: <math> P(K) \propto K^{-\gamma} </math>, and <math>\langle K^{in} \rangle=\langle K^{out} \rangle </math>, since every out-link from a node is an in-link to another.<ref>{{Cite journal|title = A natural class of robust networks|journal = Proceedings of the National Academy of Sciences|date = 2003-07-22|issn = 0027-8424|pmc = 166377|pmid = 12853565|pages = 8710–8714|volume = 100|issue = 15|doi = 10.1073/pnas.1536783100|first = Maximino|last = Aldana|first2 = Philippe|last2 = Cluzel|bibcode = 2003PNAS..100.8710A}}</ref>
 
The conditions of stability are the same in the case of networks with [[Scale-free network|scale-free]] [[network topology|topology]] where the in-and out-degree distribution is a power-law distribution: <math> P(K) \propto K^{-\gamma} </math>, and <math>\langle K^{in} \rangle=\langle K^{out} \rangle </math>, since every out-link from a node is an in-link to another.<ref>{{Cite journal|title = A natural class of robust networks|journal = Proceedings of the National Academy of Sciences|date = 2003-07-22|issn = 0027-8424|pmc = 166377|pmid = 12853565|pages = 8710–8714|volume = 100|issue = 15|doi = 10.1073/pnas.1536783100|first = Maximino|last = Aldana|first2 = Philippe|last2 = Cluzel|bibcode = 2003PNAS..100.8710A}}</ref>
274

个编辑

导航菜单