第384行: |
第384行: |
| The conditions of stability are the same in the case of networks with scale-free topology where the in-and out-degree distribution is a power-law distribution: <math> P(K) \propto K^{-\gamma} </math>, and <math>\langle K^{in} \rangle=\langle K^{out} \rangle </math>, since every out-link from a node is an in-link to another. | | The conditions of stability are the same in the case of networks with scale-free topology where the in-and out-degree distribution is a power-law distribution: <math> P(K) \propto K^{-\gamma} </math>, and <math>\langle K^{in} \rangle=\langle K^{out} \rangle </math>, since every out-link from a node is an in-link to another. |
| | | |
− | 对于具有无标度拓扑的网络,其稳定性条件是相同的,其中进出度分布是幂律分布:<math> P(K) \propto K^{-\gamma} </math>和<math>\langle K^{in} \rangle=\langle K^{out} \rangle </math>,因为节点的每个出度链接都是到另一个节点的入度链接。
| + | 对于'''<font color="#FF8000">无标度拓扑 scale-free topology </font>'''的网络来说,稳定性的条件是一样的,其中的出入度分布是幂律分布。<math>P(K) \propto K^{-\gamma}</math>, 和 <math>\langle K^{in}\rangle=\langle K^{out} \rangle</math> ,因为从一个节点发出的每一条外链都是到另一个节点的内链。 |
− | | |
| | | |
| Sensitivity shows the probability that the output of the Boolean function of a given node changes if its input changes. For random Boolean networks, | | Sensitivity shows the probability that the output of the Boolean function of a given node changes if its input changes. For random Boolean networks, |
第391行: |
第390行: |
| Sensitivity shows the probability that the output of the Boolean function of a given node changes if its input changes. For random Boolean networks, | | Sensitivity shows the probability that the output of the Boolean function of a given node changes if its input changes. For random Boolean networks, |
| | | |
− | 灵敏度表示给定节点的布尔函数的输出更改(如果其输入更改)的概率。 对于随机布尔网络,
| + | 灵敏度显示了给定节点的布尔函数的输出在其输入变化时发生变化的概率。对于随机布尔网络。 |
| <math> q_{i}=2p_{i}(1-p_{i}) </math>. In the general case, stability of the network is governed by the largest [[Eigenvalues and eigenvectors|eigenvalue]] <math> \lambda_{Q} </math> of matrix <math> Q </math>, where <math> Q_{ij}=q_{i}A_{ij} </math>, and <math> A </math> is the [[adjacency matrix]] of the network.<ref>{{Cite journal|title = The effect of network topology on the stability of discrete state models of genetic control|journal = Proceedings of the National Academy of Sciences|date = 2009-05-19|issn = 0027-8424|pmc = 2688895|pmid = 19416903|pages = 8209–8214|volume = 106|issue = 20|doi = 10.1073/pnas.0900142106|first = Andrew|last = Pomerance|first2 = Edward|last2 = Ott|first3 = Michelle|last3 = Girvan|author3-link= Michelle Girvan |first4 = Wolfgang|last4 = Losert|arxiv = 0901.4362|bibcode = 2009PNAS..106.8209P}}</ref> The network is stable if <math>\lambda_{Q}<1</math>, critical if <math>\lambda_{Q}=1</math>, unstable if <math>\lambda_{Q}>1</math>. | | <math> q_{i}=2p_{i}(1-p_{i}) </math>. In the general case, stability of the network is governed by the largest [[Eigenvalues and eigenvectors|eigenvalue]] <math> \lambda_{Q} </math> of matrix <math> Q </math>, where <math> Q_{ij}=q_{i}A_{ij} </math>, and <math> A </math> is the [[adjacency matrix]] of the network.<ref>{{Cite journal|title = The effect of network topology on the stability of discrete state models of genetic control|journal = Proceedings of the National Academy of Sciences|date = 2009-05-19|issn = 0027-8424|pmc = 2688895|pmid = 19416903|pages = 8209–8214|volume = 106|issue = 20|doi = 10.1073/pnas.0900142106|first = Andrew|last = Pomerance|first2 = Edward|last2 = Ott|first3 = Michelle|last3 = Girvan|author3-link= Michelle Girvan |first4 = Wolfgang|last4 = Losert|arxiv = 0901.4362|bibcode = 2009PNAS..106.8209P}}</ref> The network is stable if <math>\lambda_{Q}<1</math>, critical if <math>\lambda_{Q}=1</math>, unstable if <math>\lambda_{Q}>1</math>. |
| | | |
| <math> q_{i}=2p_{i}(1-p_{i}) </math>. In the general case, stability of the network is governed by the largest eigenvalue <math> \lambda_{Q} </math> of matrix <math> Q </math>, where <math> Q_{ij}=q_{i}A_{ij} </math>, and <math> A </math> is the adjacency matrix of the network. The network is stable if <math>\lambda_{Q}<1</math>, critical if <math>\lambda_{Q}=1</math>, unstable if <math>\lambda_{Q}>1</math>. | | <math> q_{i}=2p_{i}(1-p_{i}) </math>. In the general case, stability of the network is governed by the largest eigenvalue <math> \lambda_{Q} </math> of matrix <math> Q </math>, where <math> Q_{ij}=q_{i}A_{ij} </math>, and <math> A </math> is the adjacency matrix of the network. The network is stable if <math>\lambda_{Q}<1</math>, critical if <math>\lambda_{Q}=1</math>, unstable if <math>\lambda_{Q}>1</math>. |
| | | |
− | <math> q_{i}=2p_{i}(1-p_{i}) </math>。 在一般情况下,网络的稳定性由矩阵<math> Q </math>的最大特征值<math> \lambda_{Q} </math>决定,其中<math> Q_{ij}=q_{i}A_{ij} </math>和<math> A </math>是网络的邻接矩阵。 如果<math>\lambda_{Q}<1</math>是稳定的网络,如果<math>\lambda_{Q}=1</math>是关键的网络,如果<math>\lambda_{Q}>1</math>,则不稳定。 | + | <math> q_{i}=2p_{i}(1-p_{i}) </math>。在一般情况下,网络的稳定性由最大的特征值<math>\lambda_{Q}</math>来控制。的矩阵 <math>Q</math>,其中<math> Q_{ij}=q_{i}A_{ij}</math>,<math>A</math> 是网络的邻接矩阵。如果 <math>\lambda_{Q}<1</math>,网络是稳定的;如果 <math>\lambda_{Q}=1</math>,网络是临界的;如果 <math>\lambda_{Q}>1</math>,网络是不稳定的。 |
− | | |
| | | |
| == Variations of the model == | | == Variations of the model == |