第419行: |
第419行: |
| Classical Boolean networks (sometimes called CRBN, i.e. Classic Random Boolean Network) are synchronously updated. Motivated by the fact that genes don't usually change their state simultaneously, different alternatives have been introduced. A common classification is the following: | | Classical Boolean networks (sometimes called CRBN, i.e. Classic Random Boolean Network) are synchronously updated. Motivated by the fact that genes don't usually change their state simultaneously, different alternatives have been introduced. A common classification is the following: |
| | | |
− | 经典布尔网络(有时称为CRBN,即经典随机布尔网络)。 由于基因通常不会同时改变状态,因此引入了不同的选择。 常见的分类如下:
| + | 经典布尔网络(有时也称为CRBN,即经典随机布尔网络)是同步更新的。受基因通常不会同时改变其状态这一事实的激励,人们引入了不同的替代方案。常见的分类如下: |
| * '''Deterministic asynchronous updated Boolean networks''' ('''DRBN'''s) are not synchronously updated but a deterministic solution still exists. A node ''i'' will be updated when ''t ≡ Q<sub>i</sub> (''mod'' P<sub>i</sub>)'' where ''t'' is the time step.<ref name=GershensonDrbn>{{cite book|last1=Gershenson|first1=Carlos|last2=Broekaert|first2=Jan|last3=Aerts|first3=Diederik|title=Contextual Random Boolean Networks|journal=Advances in Artificial Life|date=14 September 2003|volume=2801|pages=615–624|doi=10.1007/978-3-540-39432-7_66|arxiv=nlin/0303021|series=Lecture Notes in Computer Science|trans-title=7th European Conference, ECAL 2003|location=Dortmund, Germany|isbn=978-3-540-39432-7}}</ref> | | * '''Deterministic asynchronous updated Boolean networks''' ('''DRBN'''s) are not synchronously updated but a deterministic solution still exists. A node ''i'' will be updated when ''t ≡ Q<sub>i</sub> (''mod'' P<sub>i</sub>)'' where ''t'' is the time step.<ref name=GershensonDrbn>{{cite book|last1=Gershenson|first1=Carlos|last2=Broekaert|first2=Jan|last3=Aerts|first3=Diederik|title=Contextual Random Boolean Networks|journal=Advances in Artificial Life|date=14 September 2003|volume=2801|pages=615–624|doi=10.1007/978-3-540-39432-7_66|arxiv=nlin/0303021|series=Lecture Notes in Computer Science|trans-title=7th European Conference, ECAL 2003|location=Dortmund, Germany|isbn=978-3-540-39432-7}}</ref> |
− | 确定性异步更新的布尔网络'('DRBN')不会同步更新,但确定性解决方案仍然存在。 当''t ≡ Q<sub>i</sub> (''mod'' P<sub>i</sub>)''其中''t''是节点时,将更新节点''i'' 时间步长。
| + | 当 ''t≡Q<sub>i</sub>(''mod''P<sub>i</sub>)'' 其中 ''t'' 是时间步长时,''i'' 节点将被更新。'''确定性异步更新布尔网络'''('''DRBN''''s)不是同步更新,但确定性解仍然存在。当 ''t≡Q<sub>i</sub>(''mod''P<sub>i</sub>)'' 时,''i'' 节点将被更新,其中 ''t'' 是时间步长。 |
| * The most general case is full stochastic updating ('''GARBN''', general asynchronous random boolean networks). Here, one (or more) node(s) are selected at each computational step to be updated. | | * The most general case is full stochastic updating ('''GARBN''', general asynchronous random boolean networks). Here, one (or more) node(s) are selected at each computational step to be updated. |
− | *最一般的情况是完全随机更新('''GARBN''',一般的异步随机布尔网络)。 在此,在每个计算步骤中选择一个(或多个)节点进行更新。 | + | *最一般的情况是完全随机更新('''GARBN''',一般异步随机布尔网络)。在这里,在每个计算步骤中选择一个(或多个)节点进行更新。 |
| * The '''Partially-Observed Boolean Dynamical System (POBDS)'''<ref>{{Cite journal|last=Imani|first=M.|last2=Braga-Neto|first2=U. M.|date=2017-01-01|title=Maximum-Likelihood Adaptive Filter for Partially Observed Boolean Dynamical Systems|journal=IEEE Transactions on Signal Processing|volume=65|issue=2|pages=359–371|doi=10.1109/TSP.2016.2614798|issn=1053-587X|arxiv=1702.07269|bibcode=2017ITSP...65..359I}}</ref><ref>{{Cite book|pages=972–976|last=Imani|first=M.|last2=Braga-Neto|first2=U. M.|language=en-US|doi=10.1109/GlobalSIP.2015.7418342|chapter=Optimal state estimation for boolean dynamical systems using a boolean Kalman smoother|year=2015|isbn=978-1-4799-7591-4|title=2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP)}}</ref><ref>{{Cite book|last=Imani|first=M.|last2=Braga-Neto|first2=U. M.|language=en-US|doi=10.1109/ACC.2016.7524920|title=2016 American Control Conference (ACC)|pages=227–232|year=2016|isbn=978-1-4673-8682-1}}</ref><ref>{{Cite book|last=Imani|first=M.|last2=Braga-Neto|first2=U.|date=2016-12-01|title=Point-based value iteration for partially-observed Boolean dynamical systems with finite observation space|journal=2016 IEEE 55th Conference on Decision and Control (CDC)|pages=4208–4213|doi=10.1109/CDC.2016.7798908|isbn=978-1-5090-1837-6}}</ref> signal model differs from all previous deterministic and stochastic Boolean network models by removing the assumption of direct observability of the Boolean state vector and allowing uncertainty in the observation process, addressing the scenario encountered in practice. | | * The '''Partially-Observed Boolean Dynamical System (POBDS)'''<ref>{{Cite journal|last=Imani|first=M.|last2=Braga-Neto|first2=U. M.|date=2017-01-01|title=Maximum-Likelihood Adaptive Filter for Partially Observed Boolean Dynamical Systems|journal=IEEE Transactions on Signal Processing|volume=65|issue=2|pages=359–371|doi=10.1109/TSP.2016.2614798|issn=1053-587X|arxiv=1702.07269|bibcode=2017ITSP...65..359I}}</ref><ref>{{Cite book|pages=972–976|last=Imani|first=M.|last2=Braga-Neto|first2=U. M.|language=en-US|doi=10.1109/GlobalSIP.2015.7418342|chapter=Optimal state estimation for boolean dynamical systems using a boolean Kalman smoother|year=2015|isbn=978-1-4799-7591-4|title=2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP)}}</ref><ref>{{Cite book|last=Imani|first=M.|last2=Braga-Neto|first2=U. M.|language=en-US|doi=10.1109/ACC.2016.7524920|title=2016 American Control Conference (ACC)|pages=227–232|year=2016|isbn=978-1-4673-8682-1}}</ref><ref>{{Cite book|last=Imani|first=M.|last2=Braga-Neto|first2=U.|date=2016-12-01|title=Point-based value iteration for partially-observed Boolean dynamical systems with finite observation space|journal=2016 IEEE 55th Conference on Decision and Control (CDC)|pages=4208–4213|doi=10.1109/CDC.2016.7798908|isbn=978-1-5090-1837-6}}</ref> signal model differs from all previous deterministic and stochastic Boolean network models by removing the assumption of direct observability of the Boolean state vector and allowing uncertainty in the observation process, addressing the scenario encountered in practice. |
− |
| |
− |
| |
| | | |
| == Application of Boolean Networks == | | == Application of Boolean Networks == |