更改

跳到导航 跳到搜索
删除6字节 、 2021年2月9日 (二) 14:04
第813行: 第813行:  
Turing (1936) does not elaborate further except in a footnote in which he describes how to use an a-machine to "find all the provable formulae of the [Hilbert] calculus" rather than use a choice machine. He "suppose[s] that the choices are always between two possibilities 0 and 1. Each proof will then be determined by a sequence of choices i<sub>1</sub>, i<sub>2</sub>, ..., i<sub>n</sub> (i<sub>1</sub> = 0 or 1, i<sub>2</sub> = 0 or 1, ..., i<sub>n</sub> = 0 or 1), and hence the number 2<sup>n</sup> + i<sub>1</sub>2<sup>n-1</sup> + i<sub>2</sub>2<sup>n-2</sup> + ... +i<sub>n</sub> completely determines the proof. The automatic machine carries out successively proof 1, proof 2, proof 3, ..." (Footnote ‡, The Undecidable, p.&nbsp;138)
 
Turing (1936) does not elaborate further except in a footnote in which he describes how to use an a-machine to "find all the provable formulae of the [Hilbert] calculus" rather than use a choice machine. He "suppose[s] that the choices are always between two possibilities 0 and 1. Each proof will then be determined by a sequence of choices i<sub>1</sub>, i<sub>2</sub>, ..., i<sub>n</sub> (i<sub>1</sub> = 0 or 1, i<sub>2</sub> = 0 or 1, ..., i<sub>n</sub> = 0 or 1), and hence the number 2<sup>n</sup> + i<sub>1</sub>2<sup>n-1</sup> + i<sub>2</sub>2<sup>n-2</sup> + ... +i<sub>n</sub> completely determines the proof. The automatic machine carries out successively proof 1, proof 2, proof 3, ..." (Footnote ‡, The Undecidable, p.&nbsp;138)
   −
Turing(1936)除了在脚注中描述了如何使用a-machine来“找到所有希尔伯特微积分的可证明公式”,而不是使用选择机之外,没有做进一步的说明。他"假设选择总是在0和1之间。那么每个证明将由i<sub>1</sub>, i<sub>2</sub>, ..., i<sub>n</sub> (i<sub>1</sub> = 0 或 1, i<sub>2</sub> = 0 或 1, ..., i<sub>n</sub> = 0 或 1) 的选择序列决定,因此数字 2<sup>n</sup> + i<sub>1</sub>2<sup>n-1</sup> + i<sub>2</sub>2<sup>n-2</sup> + ... +i<sub>n</sub> 完全决定了证明。自动机依次执行验证1、验证2、验证3,……”(侧重于脚注,The Undecidable,第138页)
+
Turing(1936)除了在脚注中描述了如何使用自动机来“找到所有希尔伯特微积分的可证明公式”,而不是使用选择机之外,没有做进一步的说明。他"假设选择总是在0和1之间。那么每个证明将由i<sub>1</sub>, i<sub>2</sub>, ..., i<sub>n</sub> (i<sub>1</sub> = 0 或 1, i<sub>2</sub> = 0 或 1, ..., i<sub>n</sub> = 0 或 1) 的选择序列决定,因此数字 2<sup>n</sup> + i<sub>1</sub>2<sup>n-1</sup> + i<sub>2</sub>2<sup>n-2</sup> + ... +i<sub>n</sub> 完全决定了证明。自动机依次执行验证1、验证2、验证3,……”(侧重于脚注,The Undecidable,第138页)
    
This is indeed the technique by which a deterministic (i.e., a-) Turing machine can be used to mimic the action of a nondeterministic Turing machine; Turing solved the matter in a footnote and appears to dismiss it from further consideration.
 
This is indeed the technique by which a deterministic (i.e., a-) Turing machine can be used to mimic the action of a nondeterministic Turing machine; Turing solved the matter in a footnote and appears to dismiss it from further consideration.
第821行: 第821行:  
An oracle machine or o-machine is a Turing a-machine that pauses its computation at state "o" while, to complete its calculation, it "awaits the decision" of "the oracle"—an unspecified entity "apart from saying that it cannot be a machine" (Turing (1939), The Undecidable, p.&nbsp;166–168).
 
An oracle machine or o-machine is a Turing a-machine that pauses its computation at state "o" while, to complete its calculation, it "awaits the decision" of "the oracle"—an unspecified entity "apart from saying that it cannot be a machine" (Turing (1939), The Undecidable, p.&nbsp;166–168).
   −
预言机或 o-machine 是一种图灵机器,它将计算暂停在“ o”状态,同时,为了完成计算,它“等待”“oracle”(一个未指定的实体” ,除了说它不可能是一台机器”的决定(Turing(1939) ,The undecutable,p. 166-168)。
+
预言机或 o-machine 是一种图灵机器,它将计算暂停在“ o”状态,同时,为了完成计算,它“等待”“oracle”- 一个未指定的实体“除了说它不可能是一台机器”的决定(Turing(1939) ,The undecutable,p. 166-168)。
 
      
==Universal Turing machines==
 
==Universal Turing machines==
51

个编辑

导航菜单