更改

跳到导航 跳到搜索
添加1,709字节 、 2021年2月12日 (五) 23:53
第130行: 第130行:     
Let <math>g(x)</math> be a [[Normal distribution|Gaussian]] [[Probability density function|PDF]] with mean μ and variance <math>\sigma^2</math> and <math>f(x)</math> an arbitrary [[Probability density function|PDF]] with the same variance. Since differential entropy is translation invariant we can assume that <math>f(x)</math> has the same mean of <math>\mu</math> as <math>g(x)</math>.
 
Let <math>g(x)</math> be a [[Normal distribution|Gaussian]] [[Probability density function|PDF]] with mean μ and variance <math>\sigma^2</math> and <math>f(x)</math> an arbitrary [[Probability density function|PDF]] with the same variance. Since differential entropy is translation invariant we can assume that <math>f(x)</math> has the same mean of <math>\mu</math> as <math>g(x)</math>.
 +
 +
--[[用户:CecileLi|CecileLi]]([[用户讨论:CecileLi|讨论]])  【审校】补充翻译:设<math>g(x)</math>是一个[[正态分布|高斯]][[概率密度函数| PDF]],具有均值μ和方差<math>\sigma^2</math>和<math>f(x)</math>具有相同方差的任意[[概率密度函数| PDF]]。由于微分熵是平移不变性的,我们可以假设<math>f(x)</math>与<math>g(x)</math>具有相同的<math>\mu</math>平均值。
    
Consider the [[Kullback–Leibler divergence]] between the two distributions
 
Consider the [[Kullback–Leibler divergence]] between the two distributions
第143行: 第145行:  
\end{align}</math>
 
\end{align}</math>
    +
--[[用户:CecileLi|CecileLi]]([[用户讨论:CecileLi|讨论]])  【审校】补充翻译:考虑两个分布之间的[[Kullback–Leibler散度]]
 +
 +
:<math>0\leq D{KL}(f{g)=\int{-\infty}^\infty f(x)\log\left(\frac{f(x)}{g(x)}\right)dx=-h(f)-\int{-\infty}^\infty f(x)\log(g(x))dx。</math>
 +
 +
现在请注意
 +
:<math>\begin{align}
 +
\int_{-\infty}^\infty f(x)\log(g(x)) dx &= \int_{-\infty}^\infty f(x)\log\left( \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\right) dx \\
 +
&= \int_{-\infty}^\infty f(x) \log\frac{1}{\sqrt{2\pi\sigma^2}} dx + \log(e)\int_{-\infty}^\infty f(x)\left( -\frac{(x-\mu)^2}{2\sigma^2}\right) dx \\
 +
&= -\tfrac{1}{2}\log(2\pi\sigma^2) - \log(e)\frac{\sigma^2}{2\sigma^2} \\
 +
&= -\tfrac{1}{2}\left(\log(2\pi\sigma^2) + \log(e)\right) \\
 +
&= -\tfrac{1}{2}\log(2\pi e \sigma^2)  \\
 +
&= -h(g)
 +
\end{align}</math>
    
because the result does not depend on <math>f(x)</math> other than through the variance.  Combining the two results yields
 
because the result does not depend on <math>f(x)</math> other than through the variance.  Combining the two results yields
 +
 +
--[[用户:CecileLi|CecileLi]]([[用户讨论:CecileLi|讨论]])  【审校】补充翻译:因为结果不依赖于<math>f(x)</math>而不是通过方差。将这两个结果结合起来就得到了
    
:<math> h(g) - h(f) \geq 0 \!</math>
 
:<math> h(g) - h(f) \geq 0 \!</math>
第150行: 第167行:  
with equality when <math>f(x)=g(x)</math> following from the properties of Kullback–Leibler divergence.
 
with equality when <math>f(x)=g(x)</math> following from the properties of Kullback–Leibler divergence.
   −
 
+
--[[用户:CecileLi|CecileLi]]([[用户讨论:CecileLi|讨论]])  【审校】补充翻译:当f(x)=g(x)</math>遵循Kullback-Leibler散度的性质时相等。
    
===Alternative proof===
 
===Alternative proof===
526

个编辑

导航菜单