| '''<font color="#ff8000">J.G.柯克伍德 J.G.Kirkwood</font>'''和 I.Oppenheim 将热力学平衡定义为: “一个系统处于热力学平衡状态,如果,在实验的时间内,(a)它强度特性与时间无关,(b)它的内部或与周围环境的边界处没有物质或能量流。”显然,他们没有把定义限制在孤立的或封闭的系统。它们不讨论“缓慢”发生变化的可能性,并且超出了分配给实验的时间范围。他们注意到,对于两个相接触的系统,存在一个强度性质的小子类,如果这个小子类的所有子类都相等,那么所有各自的强度性质都相等。只要满足其他一些条件,热力学平衡状态可以由这个子类定义。 | | '''<font color="#ff8000">J.G.柯克伍德 J.G.Kirkwood</font>'''和 I.Oppenheim 将热力学平衡定义为: “一个系统处于热力学平衡状态,如果,在实验的时间内,(a)它强度特性与时间无关,(b)它的内部或与周围环境的边界处没有物质或能量流。”显然,他们没有把定义限制在孤立的或封闭的系统。它们不讨论“缓慢”发生变化的可能性,并且超出了分配给实验的时间范围。他们注意到,对于两个相接触的系统,存在一个强度性质的小子类,如果这个小子类的所有子类都相等,那么所有各自的强度性质都相等。只要满足其他一些条件,热力学平衡状态可以由这个子类定义。 |
− | A thermodynamic system consisting of a single phase in the absence of external forces, in its own internal thermodynamic equilibrium, is homogeneous.<ref name="Planck 1903 3"/> This means that the material in any small volume element of the system can be interchanged with the material of any other geometrically congruent volume element of the system, and the effect is to leave the system thermodynamically unchanged. In general, a strong external force field makes a system of a single phase in its own internal thermodynamic equilibrium inhomogeneous with respect to some [[Intensive and extensive properties|intensive variables]]. For example, a relatively dense component of a mixture can be concentrated by centrifugation.
| |
− | 在没有外力的情况下,由单一相组成的热力学系统,在其自身的内部热力学平衡中是均匀的。这意味着系统中任何小体积单元中的材料可以与系统中任何其他几何相等的体积单元中的材料互换,其效果是使系统在热力学上保持不变。一般来说,一个强外力场使得一个单相系统在其自身的内部热力学平衡中对于一些'''<font color="#ff8000">强度量 Intensive Variable</font>'''是不均匀的。例如,可以通过离心来浓缩混合物中相对密度较大的组分。
| + | 在没有外力的情况下,由单一相组成的热力学系统,在其自身的内部热力学平衡中是均匀的。<ref name="Planck 1903 3"/> 这意味着系统中任何小体积单元中的材料可以与系统中任何其他几何相等的体积单元中的材料互换,其效果是使系统在热力学上保持不变。一般来说,一个强外力场使得一个单相系统在其自身的内部热力学平衡中对于一些'''<font color="#ff8000">强度量 Intensive Variable</font>'''是不均匀的。例如,可以通过离心来浓缩混合物中相对密度较大的组分。 |
| Such equilibrium inhomogeneity, induced by external forces, does not occur for the intensive variable [[temperature]]. According to [[Edward A. Guggenheim|E.A. Guggenheim]], "The most important conception of thermodynamics is temperature."<ref>[[Edward A. Guggenheim|Guggenheim, E.A.]] (1949/1967), p.5.</ref> Planck introduces his treatise with a brief account of heat and temperature and thermal equilibrium, and then announces: "In the following we shall deal chiefly with homogeneous, isotropic bodies of any form, possessing throughout their substance the same temperature and density, and subject to a uniform pressure acting everywhere perpendicular to the surface."<ref name="Planck 1903 3">[[Max Planck|Planck, M.]] (1897/1927), p.3.</ref> As did Carathéodory, Planck was setting aside surface effects and external fields and anisotropic crystals. Though referring to temperature, Planck did not there explicitly refer to the concept of thermodynamic equilibrium. In contrast, Carathéodory's scheme of presentation of classical thermodynamics for closed systems postulates the concept of an "equilibrium state" following Gibbs (Gibbs speaks routinely of a "thermodynamic state"), though not explicitly using the phrase 'thermodynamic equilibrium', nor explicitly postulating the existence of a temperature to define it. | | Such equilibrium inhomogeneity, induced by external forces, does not occur for the intensive variable [[temperature]]. According to [[Edward A. Guggenheim|E.A. Guggenheim]], "The most important conception of thermodynamics is temperature."<ref>[[Edward A. Guggenheim|Guggenheim, E.A.]] (1949/1967), p.5.</ref> Planck introduces his treatise with a brief account of heat and temperature and thermal equilibrium, and then announces: "In the following we shall deal chiefly with homogeneous, isotropic bodies of any form, possessing throughout their substance the same temperature and density, and subject to a uniform pressure acting everywhere perpendicular to the surface."<ref name="Planck 1903 3">[[Max Planck|Planck, M.]] (1897/1927), p.3.</ref> As did Carathéodory, Planck was setting aside surface effects and external fields and anisotropic crystals. Though referring to temperature, Planck did not there explicitly refer to the concept of thermodynamic equilibrium. In contrast, Carathéodory's scheme of presentation of classical thermodynamics for closed systems postulates the concept of an "equilibrium state" following Gibbs (Gibbs speaks routinely of a "thermodynamic state"), though not explicitly using the phrase 'thermodynamic equilibrium', nor explicitly postulating the existence of a temperature to define it. |
− | 这种由外力引起的平衡不均匀性,对于强度量'''<font color="#ff8000">温度 Temperature</font>'''不会发生。'''<font color="#ff8000">E.A.古根海姆 E.A. Guggenheim</font>'''认为,“热力学最重要的概念是温度。“Planck在介绍他的论文时,简要叙述了热、温度和热平衡,然后宣布: ”在下文中,我们将主要讨论任何形式的均匀、各向同性的物体,它们的物质具有相同的温度和密度,并受到到处垂直于表面的均匀压力的作用。和Carathéodory 一样,Planck将表面效应、外场和各向异性晶体排除在外。虽然Planck提到了温度,但并没有明确提到热力学平衡的概念。相比之下,Carathéodory关于封闭系统的经典热力学演示方案假设了一个遵循 Gibbs 的“平衡态”的概念(Gibbs 经常提到一个“热力学状态”) ,虽然没有明确地使用短语‘热力学平衡’ ,也没有明确地假设存在一个温度来定义它。 | + | 这种由外力引起的平衡不均匀性,对于强度量'''<font color="#ff8000">温度 Temperature</font>'''不会发生。'''<font color="#ff8000">E.A.古根海姆 E.A. Guggenheim</font>'''认为,“热力学最重要的概念是温度。“<ref>[[Edward A. Guggenheim|Guggenheim, E.A.]] (1949/1967), p.5.</ref>Planck在介绍他的论文时,简要叙述了热、温度和热平衡,然后宣布: ”在下文中,我们将主要讨论任何形式的均匀、各向同性的物体,它们的物质具有相同的温度和密度,并受到到处垂直于表面的均匀压力的作用。和Carathéodory 一样,Planck将表面效应、外场和各向异性晶体排除在外。<ref name="Planck 1903 3">[[Max Planck|Planck, M.]] (1897/1927), p.3.</ref> 虽然Planck提到了温度,但并没有明确提到热力学平衡的概念。相比之下,Carathéodory关于封闭系统的经典热力学演示方案假设了一个遵循 Gibbs 的“平衡态”的概念(Gibbs 经常提到一个“热力学状态”) ,虽然没有明确地使用短语‘热力学平衡’ ,也没有明确地假设存在一个温度来定义它。 |