更改

跳到导航 跳到搜索
删除3,665字节 、 2021年2月19日 (五) 19:19
无编辑摘要
第12行: 第12行:     
自由能原理被批评为很难理解,甚至对专家来说也是如此。<ref>{{cite journal | last=Freed | first=Peter | title=Research Digest | journal=Neuropsychoanalysis | publisher=Informa UK Limited | volume=12 | issue=1 | year=2010 | issn=1529-4145 | doi=10.1080/15294145.2010.10773634 | pages=103–106| s2cid=220306712 }}</ref>对这一原则的讨论也被批评为援引了[[形而上学|形而上学]]远离可检验的科学预测的假设,使这一原则成为不可证伪的。<ref>{{cite journal | last1=Colombo | first1=Matteo | last2=Wright | first2=Cory | title=First principles in the life sciences: the free-energy principle, organicism, and mechanism | journal=Synthese | publisher=Springer Science and Business Media LLC | date=2018-09-10 | issn=0039-7857 | doi=10.1007/s11229-018-01932-w | page=|doi-access=free}}</ref>在2018年的一次采访中,弗里斯顿承认自由能原则并不恰当[[可证伪性|可证伪性]]:“自由能原则就是它的本来面目-一个[[原则]]。与[[最小作用原理|哈密顿定常作用原理]]一样,它是不可证伪的。这是无法反驳的。事实上,除非你问可测量系统是否符合这一原则,否则你对此无能为力。”<ref>{{Cite journal|last=Friston|first=Karl|date=2018|title=Of woodlice and men: A Bayesian account of cognition, life and consciousness. An interview with Karl Friston (by Martin Fortier & Daniel Friedman)|url=https://www.aliusresearch.org/bulletin02.html|journal=ALIUS Bulletin|volume=2|pages=17–43|via=}}</ref>
 
自由能原理被批评为很难理解,甚至对专家来说也是如此。<ref>{{cite journal | last=Freed | first=Peter | title=Research Digest | journal=Neuropsychoanalysis | publisher=Informa UK Limited | volume=12 | issue=1 | year=2010 | issn=1529-4145 | doi=10.1080/15294145.2010.10773634 | pages=103–106| s2cid=220306712 }}</ref>对这一原则的讨论也被批评为援引了[[形而上学|形而上学]]远离可检验的科学预测的假设,使这一原则成为不可证伪的。<ref>{{cite journal | last1=Colombo | first1=Matteo | last2=Wright | first2=Cory | title=First principles in the life sciences: the free-energy principle, organicism, and mechanism | journal=Synthese | publisher=Springer Science and Business Media LLC | date=2018-09-10 | issn=0039-7857 | doi=10.1007/s11229-018-01932-w | page=|doi-access=free}}</ref>在2018年的一次采访中,弗里斯顿承认自由能原则并不恰当[[可证伪性|可证伪性]]:“自由能原则就是它的本来面目-一个[[原则]]。与[[最小作用原理|哈密顿定常作用原理]]一样,它是不可证伪的。这是无法反驳的。事实上,除非你问可测量系统是否符合这一原则,否则你对此无能为力。”<ref>{{Cite journal|last=Friston|first=Karl|date=2018|title=Of woodlice and men: A Bayesian account of cognition, life and consciousness. An interview with Karl Friston (by Martin Fortier & Daniel Friedman)|url=https://www.aliusresearch.org/bulletin02.html|journal=ALIUS Bulletin|volume=2|pages=17–43|via=}}</ref>
 +
    
== 背景==
 
== 背景==
第24行: 第25行:  
=== 与其他理论的关系===
 
=== 与其他理论的关系===
   −
Active inference is closely related to the good regulator theorem and related accounts of self-organisation, such as self-assembly, pattern formation, autopoiesis and practopoiesis. It addresses the themes considered in cybernetics, synergetics and embodied cognition. Because free energy can be expressed as the expected energy of observations under the variational density minus its entropy, it is also related to the maximum entropy principle. Finally, because the time average of energy is action, the principle of minimum variational free energy is a principle of least action.
      
主动推理与良好的调节器定理以及自组织的相关理论,如自组装、模式形成、自创生和拓扑实践密切相关。它涉及控制论、协同学和具身认知理论中所考虑的主题。由于自由能可以用变分密度下观测值的期望能量减去其熵来表示,因此它也与最大熵原理有关。最后,由于能量的时间平均值是作用量,因此最小变分自由能原理是最小作用量原理。
 
主动推理与良好的调节器定理以及自组织的相关理论,如自组装、模式形成、自创生和拓扑实践密切相关。它涉及控制论、协同学和具身认知理论中所考虑的主题。由于自由能可以用变分密度下观测值的期望能量减去其熵来表示,因此它也与最大熵原理有关。最后,由于能量的时间平均值是作用量,因此最小变分自由能原理是最小作用量原理。
      −
  −
Active inference is closely related to the [[Good Regulator|good regulator theorem]]<ref>Conant, R. C., & Ashby, R. W. (1970). [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.3702&rep=rep1&type=pdf Every Good Regulator of a system must be a model of that system]. Int. J. Systems Sci. , 1 (2), 89–97.</ref> and related accounts of [[self-organisation]],<ref>Kauffman, S. (1993). [https://books.google.com/books?hl=en&lr=&id=lZcSpRJz0dgC&oi=fnd&pg=PR13&dq=%22The+Origins+of+Order:+Self-Organization+and+Selection+in+Evolution%22&ots=9_GMeW6MVv&sig=9qVR16wmBt2M6QL9xJu9wkeqGtg#v=onepage&q=%22The%20Origins%20of%20Order%3A%20Self-Organization%20and%20Selection%20in%20Evolution%22&f=false The Origins of Order: Self-Organization and Selection in Evolution]. Oxford: Oxford University Press.</ref><ref>Nicolis, G., & Prigogine, I. (1977). Self-organization in non-equilibrium systems. New York: John Wiley.</ref> such as [[self-assembly]], [[pattern formation]], [[autopoiesis]]<ref>Maturana, H. R., & Varela, F. (1980). [http://topologicalmedialab.net/xinwei/classes/readings/Maturana/autopoesis_and_cognition.pdf Autopoiesis: the organization of the living]. In V. F. Maturana HR (Ed.), Autopoiesis and Cognition. Dordrecht, Netherlands: Reidel.</ref> and [[practopoiesis]]<ref>Nikolić, D. (2015). [https://www.sciencedirect.com/science/article/pii/S002251931500106X Practopoiesis: Or how life fosters a mind]. Journal of theoretical biology, 373, 40-61.</ref>.
      
主动推理与[[灵活调整|好调节器定理]]密切相关<ref>Conant, R. C., & Ashby, R. W. (1970). [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.3702&rep=rep1&type=pdf Every Good Regulator of a system must be a model of that system]. Int. J. Systems Sci. , 1 (2), 89–97.</ref>以及与[[自组织]]的内容相关,<ref>Kauffman, S. (1993). [https://books.google.com/books?hl=en&lr=&id=lZcSpRJz0dgC&oi=fnd&pg=PR13&dq=%22The+Origins+of+Order:+Self-Organization+and+Selection+in+Evolution%22&ots=9_GMeW6MVv&sig=9qVR16wmBt2M6QL9xJu9wkeqGtg#v=onepage&q=%22The%20Origins%20of%20Order%3A%20Self-Organization%20and%20Selection%20in%20Evolution%22&f=false The Origins of Order: Self-Organization and Selection in Evolution]. Oxford: Oxford University Press.</ref><ref>Nicolis, G., & Prigogine, I. (1977). Self-organization in non-equilibrium systems. New York: John Wiley.</ref> 例如[[自组装]],[[模式形成]],[[自生]]<ref>Maturana, H. R., & Varela, F. (1980). [http://topologicalmedialab.net/xinwei/classes/readings/Maturana/autopoesis_and_cognition.pdf Autopoiesis: the organization of the living]. In V. F. Maturana HR (Ed.), Autopoiesis and Cognition. Dordrecht, Netherlands: Reidel.</ref>和[[实践]]<ref>Nikolić, D. (2015). [https://www.sciencedirect.com/science/article/pii/S002251931500106X Practopoiesis: Or how life fosters a mind]. Journal of theoretical biology, 373, 40-61.</ref>.
 
主动推理与[[灵活调整|好调节器定理]]密切相关<ref>Conant, R. C., & Ashby, R. W. (1970). [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.3702&rep=rep1&type=pdf Every Good Regulator of a system must be a model of that system]. Int. J. Systems Sci. , 1 (2), 89–97.</ref>以及与[[自组织]]的内容相关,<ref>Kauffman, S. (1993). [https://books.google.com/books?hl=en&lr=&id=lZcSpRJz0dgC&oi=fnd&pg=PR13&dq=%22The+Origins+of+Order:+Self-Organization+and+Selection+in+Evolution%22&ots=9_GMeW6MVv&sig=9qVR16wmBt2M6QL9xJu9wkeqGtg#v=onepage&q=%22The%20Origins%20of%20Order%3A%20Self-Organization%20and%20Selection%20in%20Evolution%22&f=false The Origins of Order: Self-Organization and Selection in Evolution]. Oxford: Oxford University Press.</ref><ref>Nicolis, G., & Prigogine, I. (1977). Self-organization in non-equilibrium systems. New York: John Wiley.</ref> 例如[[自组装]],[[模式形成]],[[自生]]<ref>Maturana, H. R., & Varela, F. (1980). [http://topologicalmedialab.net/xinwei/classes/readings/Maturana/autopoesis_and_cognition.pdf Autopoiesis: the organization of the living]. In V. F. Maturana HR (Ed.), Autopoiesis and Cognition. Dordrecht, Netherlands: Reidel.</ref>和[[实践]]<ref>Nikolić, D. (2015). [https://www.sciencedirect.com/science/article/pii/S002251931500106X Practopoiesis: Or how life fosters a mind]. Journal of theoretical biology, 373, 40-61.</ref>.
   −
  −
It addresses the themes considered in [[cybernetics]], [[Synergetics (Haken)|synergetics]]<ref>Haken, H. (1983). Synergetics: An introduction. Non-equilibrium phase transition and self-organisation in physics, chemistry and biology (3rd ed.). Berlin: Springer Verlag.</ref> and [[embodied cognition]]. Because free energy can be expressed as the expected energy of observations under the variational density minus its entropy, it is also related to the [[maximum entropy principle]].<ref>Jaynes, E. T. (1957). [http://bayes.wustl.edu/etj/articles/theory.1.pdf Information Theory and Statistical Mechanics]. Physical Review Series II, 106 (4), 620–30.</ref> Finally, because the time average of energy is action, the principle of minimum variational free energy is a [[principle of least action]].
      
它解决了[[控制论]],[[协同学(哈肯)|协同学]]中考虑的主题<ref>Haken, H. (1983). Synergetics: An introduction. Non-equilibrium phase transition and self-organisation in physics, chemistry and biology (3rd ed.). Berlin: Springer Verlag.</ref>以及[[具身认知]]。由于自由能可以表示为变分密度下观测值的期望能量减去其熵,因此它也与[[最大熵原理]]有关。<ref>Jaynes, E. T. (1957). [http://bayes.wustl.edu/etj/articles/theory.1.pdf Information Theory and Statistical Mechanics]. Physical Review Series II, 106 (4), 620–30.</ref> 最后,由于能量的时间平均是作用量,最小变分自由能原理是一种[[最小作用原理]]。
 
它解决了[[控制论]],[[协同学(哈肯)|协同学]]中考虑的主题<ref>Haken, H. (1983). Synergetics: An introduction. Non-equilibrium phase transition and self-organisation in physics, chemistry and biology (3rd ed.). Berlin: Springer Verlag.</ref>以及[[具身认知]]。由于自由能可以表示为变分密度下观测值的期望能量减去其熵,因此它也与[[最大熵原理]]有关。<ref>Jaynes, E. T. (1957). [http://bayes.wustl.edu/etj/articles/theory.1.pdf Information Theory and Statistical Mechanics]. Physical Review Series II, 106 (4), 620–30.</ref> 最后,由于能量的时间平均是作用量,最小变分自由能原理是一种[[最小作用原理]]。
   −
These schematics illustrate the partition of states into internal and hidden or external states that are separated by a Markov blanket – comprising sensory and active states. The lower panel shows this partition as it would be applied to action and perception in the brain; where active and internal states minimise a free energy functional of sensory states. The ensuing self-organisation of internal states then correspond perception, while action couples brain states back to external states. The upper panel shows exactly the same dependencies but rearranged so that the internal states are associated with the intracellular states of a cell, while the sensory states become the surface states of the cell membrane overlying active states (e.g., the actin filaments of the cytoskeleton).
      
这些示意图说明了如何将状态划分为内部状态和隐藏状态或外部状态,这些状态由一个马尔可夫毯(包括感觉状态和活动状态)分隔开来。下面的面板显示了这个分区,因为它将应用于大脑中的动作和感知;活动和内部状态将感官状态的自由能功能最小化。随后内部状态的自组织与感知相对应,而动作将大脑状态与外部状态耦合。上面的面板显示完全相同的依赖性,但重新排列,使内部状态与细胞内状态相关联,而感觉状态成为细胞膜的表面状态覆盖活性状态(例如,细胞骨架的肌动蛋白丝)。
 
这些示意图说明了如何将状态划分为内部状态和隐藏状态或外部状态,这些状态由一个马尔可夫毯(包括感觉状态和活动状态)分隔开来。下面的面板显示了这个分区,因为它将应用于大脑中的动作和感知;活动和内部状态将感官状态的自由能功能最小化。随后内部状态的自组织与感知相对应,而动作将大脑状态与外部状态耦合。上面的面板显示完全相同的依赖性,但重新排列,使内部状态与细胞内状态相关联,而感觉状态成为细胞膜的表面状态覆盖活性状态(例如,细胞骨架的肌动蛋白丝)。
   −
== Definition定义 ==
+
== 定义 ==
 
       
10

个编辑

导航菜单