The possibility of bias arises because a difference in the treatment outcome (such as the [[average treatment effect]]) between treated and untreated groups may be caused by a factor that predicts treatment rather than the treatment itself. In [[randomized experiment]]s, the randomization enables unbiased estimation of treatment effects; for each covariate, randomization implies that treatment-groups will be balanced on average, by the [[law of large numbers]]. Unfortunately, for observational studies, the assignment of treatments to research subjects is typically not random. [[Matching (statistics)|Matching]] attempts to reduce the treatment assignment bias, and mimic randomization, by creating a sample of units that received the treatment that is comparable on all observed covariates to a sample of units that did not receive the treatment. | The possibility of bias arises because a difference in the treatment outcome (such as the [[average treatment effect]]) between treated and untreated groups may be caused by a factor that predicts treatment rather than the treatment itself. In [[randomized experiment]]s, the randomization enables unbiased estimation of treatment effects; for each covariate, randomization implies that treatment-groups will be balanced on average, by the [[law of large numbers]]. Unfortunately, for observational studies, the assignment of treatments to research subjects is typically not random. [[Matching (statistics)|Matching]] attempts to reduce the treatment assignment bias, and mimic randomization, by creating a sample of units that received the treatment that is comparable on all observed covariates to a sample of units that did not receive the treatment. |