更改

跳到导航 跳到搜索
添加9字节 、 2021年5月31日 (一) 11:25
无编辑摘要
第26行: 第26行:  
In order to define formally the ATE, we define two potential outcomes : <math>y_{0}(i)</math> is the value of the outcome variable for individual <math>i</math> if they are not treated, <math>y_{1}(i)</math> is the value of the outcome variable for individual <math>i</math> if they are treated. For example, <math>y_{0}(i)</math>  is the health status of the individual if they are not administered the drug under study and <math>y_{1}(i)</math> is the health status if they are administered the drug.
 
In order to define formally the ATE, we define two potential outcomes : <math>y_{0}(i)</math> is the value of the outcome variable for individual <math>i</math> if they are not treated, <math>y_{1}(i)</math> is the value of the outcome variable for individual <math>i</math> if they are treated. For example, <math>y_{0}(i)</math>  is the health status of the individual if they are not administered the drug under study and <math>y_{1}(i)</math> is the health status if they are administered the drug.
   −
为了正式定义 ATE,我们定义了两个潜在的结果: <math>y_{0}(i)</math > 是个体 <math> i </math> 没有被处理的结果变量的取值,<math> y _ {1}(i) </math> 是个体 <math> i </math> 被处理的结果变量的取值。例如,<math>y_{0}(i)</math > 是个体 <math> i </math> 没有被注射研究药物的个体健康状态,<math>y_{1}(i)</math > 是个体 <math> i </math> 被注射药物的健康状态。
+
为了正式定义平均处理效应,我们定义了两个潜在的结果: <math>y_{0}(i)</math > 是个体 <math> i </math> 没有被处理的结果变量的取值,<math> y _ {1}(i) </math> 是个体 <math> i </math> 被处理的结果变量的取值。例如,<math>y_{0}(i)</math > 是个体 <math> i </math> 没有被注射研究药物的健康状态,<math>y_{1}(i)</math > 是个体 <math> i </math> 被注射药物的健康状态。
    
The treatment effect for individual <math>i</math> is given by <math>y_{1}(i)-y_{0}(i)=\beta(i)</math>. In the general case, there is no reason to expect this effect to be constant across individuals. The average treatment effect is given by  
 
The treatment effect for individual <math>i</math> is given by <math>y_{1}(i)-y_{0}(i)=\beta(i)</math>. In the general case, there is no reason to expect this effect to be constant across individuals. The average treatment effect is given by  
   −
个体 <math> i </math> 的治疗效果定义为 <math> y_{1}(i)-y_{0}(i) = beta (i) </math> 。在一般情况下,这种治疗影响在个体之间是不一样的。平均处理效果定义为
+
个体 <math> i </math> 的处理效应定义为 <math> y_{1}(i)-y_{0}(i) = \beta (i) </math> 。在一般情况下,这种治疗影响在个体之间是不一样的。平均处理效果定义为
    
:<math>\text{ATE} = \frac{1}{N}\sum_i (y_{1}(i)-y_{0}(i))</math>
 
:<math>\text{ATE} = \frac{1}{N}\sum_i (y_{1}(i)-y_{0}(i))</math>
252

个编辑

导航菜单