更改

跳到导航 跳到搜索
添加40字节 、 2021年5月31日 (一) 11:34
无编辑摘要
第1行: 第1行:  
此词条暂由彩云小译翻译,翻译字数共1184,未经人工整理和审校,带来阅读不便,请见谅。heieh
 
此词条暂由彩云小译翻译,翻译字数共1184,未经人工整理和审校,带来阅读不便,请见谅。heieh
   −
The '''average treatment effect'''  ('''ATE''') is a measure used to compare treatments (or interventions) in randomized experiments, evaluation of policy interventions, and medical trials. The ATE measures the difference in [[mean]] (average) outcomes between units assigned to the treatment and units assigned to the control.  In a [[randomized trial]] (i.e., an experimental study), the average treatment effect can be [[Estimator|estimated]] from a sample using a comparison in mean outcomes for treated and untreated units. However, the ATE is generally understood as a [[causal]] parameter (i.e., an estimate or property of a [[Statistical population|population]]) that a researcher desires to know, defined without reference to the [[study design]] or estimation procedure. Both [[Observational study|observational]] studies and experimental study designs with random assignment may enable one to estimate an ATE in a variety of ways.
+
The '''Average Treatment Effect'''  ('''ATE''') is a measure used to compare treatments (or interventions) in randomized experiments, evaluation of policy interventions, and medical trials. The ATE measures the difference in [[mean]] (average) outcomes between units assigned to the treatment and units assigned to the control.  In a [[randomized trial]] (i.e., an experimental study), the average treatment effect can be [[Estimator|estimated]] from a sample using a comparison in mean outcomes for treated and untreated units. However, the ATE is generally understood as a [[causal]] parameter (i.e., an estimate or property of a [[Statistical population|population]]) that a researcher desires to know, defined without reference to the [[study design]] or estimation procedure. Both [[Observational study|observational]] studies and experimental study designs with random assignment may enable one to estimate an ATE in a variety of ways.
    
平均处理效应 (Average Treatment Effect, ATE)是在随机实验、政策干预评估和医学实验中用于比较治疗或干预的一种测量方法。平均处理效应测量分配给处理单位和控制单位之间的平均结果的差异。在随机实验或者实验研究中,平均处理效应可以通过比较样本在处理单元和未处理单元的平均结果进行估计获得。然而,平均处理效应通常被理解为研究人员希望知道的一个因果参数 (即一个总体的估计或属性) ,定义时不参考试验设计或估计过程。观察性研究和随机赋值的实验性研究设计可能使得以多种方式进行平均处理效应估计。
 
平均处理效应 (Average Treatment Effect, ATE)是在随机实验、政策干预评估和医学实验中用于比较治疗或干预的一种测量方法。平均处理效应测量分配给处理单位和控制单位之间的平均结果的差异。在随机实验或者实验研究中,平均处理效应可以通过比较样本在处理单元和未处理单元的平均结果进行估计获得。然而,平均处理效应通常被理解为研究人员希望知道的一个因果参数 (即一个总体的估计或属性) ,定义时不参考试验设计或估计过程。观察性研究和随机赋值的实验性研究设计可能使得以多种方式进行平均处理效应估计。
第46行: 第46行:  
Depending on the data and its underlying circumstances, many methods can be used to estimate the ATE. The most common ones are:
 
Depending on the data and its underlying circumstances, many methods can be used to estimate the ATE. The most common ones are:
   −
根据数据及其潜在环境,可以使用许多方法来估计ATE。最常见方法是:
+
根据数据及其潜在环境,可以使用许多方法来估计平均处理效应<math> \text{ATE} </math>。最常见方法是:
   −
* 自然实验 Natural experiment
+
* 自然实验 Natural Experiment
   −
* 双重差分模型 Difference in differences
+
* 双重差分模型 Difference in Differences
   −
* 断点回归设计 Regression discontinuity design
+
* 断点回归设计 Regression Discontinuity Design
   −
* 倾向评分匹配 Propensity score matching
+
* 倾向评分匹配 Propensity Score Matching
   −
* 工具变量估计 Instrumental variables estimation
+
* 工具变量估计 Instrumental Variables Estimation
    
== An example ==
 
== An example ==
252

个编辑

导航菜单