更改

跳到导航 跳到搜索
删除2字节 、 2021年6月2日 (三) 15:02
无编辑摘要
第135行: 第135行:  
根据Stalnaker的分析,存在一个最接近的世界,在这个世界里,(1)和(2)中提到的公平的硬币被抛出,硬币要么正面朝上,要么反面朝上。因此,要么(1)是真,(2)是假,要么(1)是假,(2)是真。然而,根据Lewis的分析,(1)和(2)都是假的,因为公平的硬币正面朝上的世界并不比反面朝上的世界更接近或更远离。对Lewis来说,“如果硬币被抛出,它将正面朝上或反面朝上”是真的,但这并不意味着“如果硬币被抛出,它将落在正面”,或“如果硬币被抛出,它就会反面朝上”。
 
根据Stalnaker的分析,存在一个最接近的世界,在这个世界里,(1)和(2)中提到的公平的硬币被抛出,硬币要么正面朝上,要么反面朝上。因此,要么(1)是真,(2)是假,要么(1)是假,(2)是真。然而,根据Lewis的分析,(1)和(2)都是假的,因为公平的硬币正面朝上的世界并不比反面朝上的世界更接近或更远离。对Lewis来说,“如果硬币被抛出,它将正面朝上或反面朝上”是真的,但这并不意味着“如果硬币被抛出,它将落在正面”,或“如果硬币被抛出,它就会反面朝上”。
   −
=== 其他考虑===
+
===因果模型===
   −
====因果模型====
+
<font color="#ff8000">因果模型框架 Causal Models Framework</font>从<font color="#ff8000">结构方程(structural equations)Structural Equation Model</font>系统的角度分析反事实。在一个方程系统中,每个变量都被分配了一个值,这个值是系统中其他变量的显式函数。给定这样一个模型,“如果X是X,Y就会是Y(''Y'' would be ''y'' had ''X'' been ''x'')”这个句子 (形式上为  ''X = x'' > ''Y = y'' )被定义为断言。如果我们用一个常数''X = x''取代当前决定 ''X''的方程,并求解变量''Y''的方程组,得到的解将是''Y = y''。这个定义已被证明与可能世界语义学的公理兼容,并构成自然科学和社会科学中因果推理的基础。因为这些领域的每个结构方程都对应于一个熟悉的因果机制,这个因果机制可以被研究者进行有意义地推理。这种方法是由Judea Pearl(2000)提出的,作为编码关于因果关系的细粒度直觉的手段,这些直觉在其他提议的系统中难以捕捉。<ref name="Pearl2000">{{Cite book |last=Pearl |first=Judea |title=Causality |publisher=Cambridge University Press |year=2000 }}</ref>
   −
<font color="#ff8000">因果模型框架 Causal Models Framework</font>从<font color="#ff8000">结构方程(structural equations)Structural Equation Model</font>系统的角度分析反事实。在一个方程系统中,每个变量都被分配了一个值,这个值是系统中其他变量的显式函数。给定这样一个模型,“如果X是X,Y就会是Y(''Y'' would be ''y'' had ''X'' been ''x'')”这个句子 (形式上为  ''X = x'' > ''Y = y'' )被定义为断言。如果我们用一个常数''X = x''取代当前决定 ''X''的方程,并求解变量''Y''的方程组,得到的解将是''Y = y''。这个定义已被证明与可能世界语义学的公理兼容,并构成自然科学和社会科学中因果推理的基础。因为这些领域的每个结构方程都对应于一个熟悉的因果机制,这个因果机制可以被研究者进行有意义地推理。这种方法是由Judea Pearl(2000)提出的,作为编码关于因果关系的细粒度直觉的手段,这些直觉在其他提议的系统中难以捕捉。<ref name="Pearl2000">{{Cite book |last=Pearl |first=Judea |title=Causality |publisher=Cambridge University Press |year=2000 }}</ref>
+
=== 其他考虑===
    
====信念修正====
 
====信念修正====
48

个编辑

导航菜单