第10行: |
第10行: |
| | | |
| | | |
− | 这个想法是[[鲁宾因果推理模型]]的一部分,由[[Donald Rubin]]和[[Paul R. Rosenbaum|Paul Rosenbaum]] 在20世纪70年代早期合作开发。在那个时期,他们的文章的确切定义是不同的。鲁宾在1978年的一篇文章中讨论了可忽略的分配机制,这种机制可以理解为个体被分配到治疗小组的方式,这与数据分析无关,因为关于个体的所有记录都是记录在案的。后来,在1983年鲁宾和罗森鲍姆更愿意定义强可忽略的治疗分配,这是一个更强的条件,数学公式为 < math > (r _ 1,r _ 0) perp!\!\!对于所有的病人来说,数学是一个潜在的治疗结果,数学是一些协变量,数学是实际的治疗方法。 | + | 这个想法是[[鲁宾因果推理模型]]的一部分,由[[Donald Rubin]]和[[Paul R. Rosenbaum|Paul Rosenbaum]] 在20世纪70年代早期合作开发。在那个时期,他们的文章的确切定义是不同的。鲁宾在1978年的一篇文章中讨论了''可忽略的分配机制'',<ref name="rubin78">{{cite journal |last1=Rubin |first1=Donald |title=Bayesian Inference for Causal Effects: The Role of Randomization |journal=The Annals of Statistics |date=1978 |volume=6 |issue=1 |pages=34–58|doi=10.1214/aos/1176344064 |doi-access=free }}</ref> 这种机制可以理解为个体被分配到处理组的方式,这与数据分析无关,因为关于个体的所有记录都是记录在案的。后来,在1983年鲁宾和罗森鲍姆更愿意定义''强忽略性的处理分配'' <ref>{{cite journal |last1=Rubin |first1=Donald B. |last2=Rosenbaum |first2=Paul R. |title=The Central Role of the Propensity Score in Observational Studies for Causal Effects |journal=Biometrika |date=1983 |volume=70 |issue=1 |pages=41–55 |doi=10.2307/2335942 |jstor=2335942 |doi-access=free }}</ref>,这是一个更强的条件,数学公式为<math>(r_1,r_0) \perp \!\!\!\perp z \mid v ,\quad 0<\operatorname{pr}(z=1)<1 \quad \forall v</math>,其中<math>r_t</math>是给定处理状态 <math>t</math>下的潜在结果,<math>v</math> 是一些协变量,<math>z</math> 是实际的处理结果。 |
| | | |
| | | |
第23行: |
第23行: |
| Ignorability (better called exogeneity) simply means we can ignore how one ended up in one vs. the other group (‘treated’ Tx = 1, or ‘control’ Tx = 0) when it comes to the potential outcome (say Y). It was also called unconfoundedness, selection on the observables, or no omitted variable bias.<ref>{{cite journal|last1=Yamamoto|first1=Teppei|title=Understanding the Past: Statistical Analysis of Causal Attribution|journal=Journal of Political Science|date=2012|volume=56|issue=1|pages=237–256|doi=10.1111/j.1540-5907.2011.00539.x|hdl=1721.1/85887}}</ref> | | Ignorability (better called exogeneity) simply means we can ignore how one ended up in one vs. the other group (‘treated’ Tx = 1, or ‘control’ Tx = 0) when it comes to the potential outcome (say Y). It was also called unconfoundedness, selection on the observables, or no omitted variable bias.<ref>{{cite journal|last1=Yamamoto|first1=Teppei|title=Understanding the Past: Statistical Analysis of Causal Attribution|journal=Journal of Political Science|date=2012|volume=56|issue=1|pages=237–256|doi=10.1111/j.1540-5907.2011.00539.x|hdl=1721.1/85887}}</ref> |
| | | |
− | 可忽略性(更好地称为外生性)简单地意味着,当涉及到潜在结果时,我们可以忽略一个人如何最终处于一个群体中而非另一个群体中(“处理过的”Tx = 1,或“控制过的”Tx = 0)。它也被称为不混淆,选择的可观察的,或没有遗漏的变量偏见。 | + | 可忽略性(称为外生性更好)其简明含义是,当涉及到潜在结果时,我们可以忽略一个人如何最终处于一个群体中而非另一个群体中(“处理组”Tx = 1,或“控制组”Tx = 0)。它也被称为不混淆,选择的可观察的,或没有遗漏的变量偏差<ref>{{cite journal|last1=Yamamoto|first1=Teppei|title=Understanding the Past: Statistical Analysis of Causal Attribution|journal=Journal of Political Science|date=2012|volume=56|issue=1|pages=237–256|doi=10.1111/j.1540-5907.2011.00539.x|hdl=1721.1/85887}}</ref>。 |
| | | |
| | | |
第31行: |
第31行: |
| | | |
| | | |
− | 在形式上,它被写成[ y < sub > i </sub > 1,y < sub > i </sub > 0]⊥ Tx < sub > i </sub > ,或者用文字来说,人们的潜在 y 结果我已经治疗或不治疗不取决于他们是否真的被(可观察的)治疗。换句话说,我们可以忽略人们是如何在一种情况下和另一种情况下结束生命的,而把他们的潜在结果看作是可以交换的。虽然这看起来很厚,但是如果我们为“理想”(潜在)世界添加“已实现”的下标和上标就变得很清楚了(由 https://www.cambridge.org/core/books/statistical-models-and-causal-inference/7ce8d4957ff6e9615aaac4128fa8246e David Freedman 提出的符号; 一个视觉可以在这里帮助: [ https://drive.google.com/open?id=1nlhhh0il225liy33nrih3zfgox1_-_v9潜在结果的简化])。
| + | 数学形式上,它被写成[Y<sub>i</sub>1, Y<sub>i</sub>0] ⊥ Tx<sub>i</sub> ,或者用文字来说,人们的潜在结果Y我已经治疗或不治疗不取决于他们是否真的被(可观察的)治疗。换句话说,我们可以忽略人们是如何在一种情况下和另一种情况下结束生命的,而把他们的潜在结果看作是可以交换的。虽然这看起来很厚,但是如果我们为“理想”(潜在)世界添加“已实现”的下标和上标就变得很清楚了(由 [https://www.cambridge.org/core/books/statistical-models-and-causal-inference/7CE8D4957FF6E9615AAAC4128FA8246E David Freedman]提出的符号; 一个视觉可以在这里帮助:[https://drive.google.com/open?id=1nLHHH0il225LIy33nRiH3ZfgoX1_-_V9 potential outcomes simplified]). |
| | | |
| So: Y<sub>1</sub><sup>1</sup>/*Y<sub>0</sub><sup>1</sup> are potential Y outcomes had the person been treated (superscript <sup>1</sup>), when in reality they have actually been (Y<sub>1</sub><sup>1</sup>, subscript <sub>1</sub>), or not (*Y<sub>0</sub><sup>1</sup>: the * signals this quantity can never be realized or observed, or is ''fully'' contrary-to-fact or counterfactual, CF). | | So: Y<sub>1</sub><sup>1</sup>/*Y<sub>0</sub><sup>1</sup> are potential Y outcomes had the person been treated (superscript <sup>1</sup>), when in reality they have actually been (Y<sub>1</sub><sup>1</sup>, subscript <sub>1</sub>), or not (*Y<sub>0</sub><sup>1</sup>: the * signals this quantity can never be realized or observed, or is ''fully'' contrary-to-fact or counterfactual, CF). |
| | | |
− | 所以: y < sub > 1 </sub > < sup > 1 </sup >/* y < sub > 0 </sub > </sup > </sup > < 1 </sup > 是潜在的 y 结果,如果人被处理(上标 < sup > 1 </sup >) ,而实际上它们是(y < sub > 1 </sub > </sup > 1 </sup > ,下标 < sub > 1 </sub > >) ,或不是(* y < sub > 0 </sub > < > </sup > < 1 </sup > </> : * 这个数量是不可能实现或观察到的,或完全与事实或事实相反,CF)。 | + | 所以:Y<sub>1</sub><sup>1</sup>/*Y<sub>0</sub><sup>1</sup>是潜在结果Y,如果个体被处理(superscript <sup>1</sup>) ,那么实际上它们是(Y<sub>1</sub><sup>1</sup>, subscript <sub>1</sub>) ,而不是(*Y<sub>0</sub><sup>1</sup>:: * 表示这个值是无法实现或不可观测的,或''完全''与事实或事实相反,CF)。 |
| | | |
| | | |
第42行: |
第42行: |
| | | |
| | | |
− | 同样,如果未经治疗(上标 < 上标 > 0 </>) ,实际上可能发生(* y < 上标 > 1 </sub > < > < 上标 > 0 </sup > ,下标 < 上标 > 1 </sub > < 0 </sup > ,< 上标 > 1 </sub > </sup > ,< 上标 < 上标 > 1 </sub > > </sub > > > ,或者实际上不发生(y < 上标 > 0 </sub > </sub > < 0 </sub > > < 0 </>)。
| + | 同样,*Y<sub>1</sub><sup>0</sup>/Y<sub>0</sub><sup>0</sup>是个体未被处理 (superscript <sup>0</sup>)的潜在结果Y,当现实中它们是(*Y<sub>1</sub><sup>0</sup>, subscript <sub>1</sub>),或实际上不是 (Y<sub>0</sub><sup>0</sup>). |
| | | |
| | | |
第49行: |
第49行: |
| | | |
| | | |
− | 对于相同的条件分配,每个潜在结果(PO)中只有一个可以实现,而另一个则不能,因此当我们试图估计治疗效果时,我们需要用可观测值(或估计值)来代替完全相反的结果。当可忽略性/外生性成立时,如人们被随机分配治疗与否,我们可以用可观察到的对应的 y < sub > 1 </sub > < sup > 1 </sup > 替换 y < sub > 0 </sub > </sup > 1 </sup > </sup > </sup > ,而 y < sub > 1 </sub > < sup > 0 </sup > 与其对应的 y < sub > 0 </sub > </sub > < sup > 0 </sup > </sup > ,不在个体水平 y < sub > i </sub > </sub > >’s,而在 e [ y < sub > i </sub > </sub > < sup > 1 </sub > >-y </sub > i </sub > < sup > </sup > 0 </sup > > 这样的平均值时,正是因果治疗效应(TE)试图恢复的结果。 | + | 对于相同的条件分配,每个潜在结果(PO)中只有一个是实际发生的,而另一个不会发生,因此当我们试图估计治疗效果时,我们需要用可观测值(或估计值)来代替完全相反的结果。当可忽略性/外生性成立时,如人们被随机分配治疗与否,我们可以用可观察到的*''Y''<sub>0</sub><sup>1</sup>’替换‘Y<sub>1</sub><sup>1</sup>,而 *Y<sub>1</sub><sup>0</sup> 与其对应的''Y''<sub>0</sub><sup>0</sup>,不在 Y<sub>i</sub>的个体水平,而是 E[''Y''<sub>''i''</sub><sup>1</sup> – ''Y''<sub>''i''</sub><sup>0</sup>]平均层面而言在 ,这样的平均值时,正是因果治疗效应(TE)试图恢复的结果。 |
| | | |
| | | |
第56行: |
第56行: |
| | | |
| | | |
− | 由于“一致性规则”,潜在的结果是实际实现的价值,因此我们可以写 y < sub > i </sub > < sup > 0 </sup > </sub > < 0 </sup > </sup > 和 y < sub > i </sup > </sup > 1 </sup > = y < sub > </sub > < sup > < 1 </sub > </sup > </sup > (“一致性规则指出,假设个体在某种条件下实现的潜在结果恰恰是该个体所经历的结果”,p. 872)。因此,TE = e [ y </sub > i </sub > < sup > 1 </sup >-y </sub > i </sub > < sup > 0 </sup > ] = e [ y < sub > i </sub > </sup > 1 </sup >-y </sub > i0 </sub > </sup > 0 </sup > ]。 | + | 由于“一致性规则”,潜在的结果是实际实现的价值,因此我们可以写 Y<sub>i</sub><sup>0</sup> = Y<sub>i0</sub><sup>0</sup> and Y<sub>i</sub><sup>1</sup> = Y<sub>i1</sub><sup>1</sup>("一致性规则指出,假设个体在某种条件下实现的潜在结果恰恰是该个体所经历的结果",<ref>{{cite journal|last1=Pearl|first1=Judea|title=On the consistency rule in causal inference: axiom, definition, assumption, or theorem?|journal=Epidemiology|date=2010|volume=21|issue=6|pages=872–875|doi=10.1097/EDE.0b013e3181f5d3fd|pmid=20864888}}</ref> p. 872).因此,TE = E[Y<sub>i</sub><sup>1</sup> – Y<sub>i</sub><sup>0</sup>] = E[Y<sub>i1</sub><sup>1</sup> – Y<sub>i0</sub><sup>0</sup>]. |
| | | |
| Now, by simply adding and subtracting the same fully counterfactual quantity *Y<sub>1</sub><sup>0</sup> we get: | | Now, by simply adding and subtracting the same fully counterfactual quantity *Y<sub>1</sub><sup>0</sup> we get: |
| | | |
− | 现在,通过简单的加减相同的完全反事实量 * y < sub > 1 </sub > < sup > 0 </sup > 我们得到: | + | 现在,通过简单的加减相同的完全反事实量 *Y<sub>1</sub><sup>0</sup> 我们得到: |
| | | |
| E[Y<sub>i1</sub><sup>1</sup> – Y<sub>i0</sub><sup>0</sup>] = E[Y<sub>i1</sub><sup>1</sup> –*Y<sub>1</sub><sup>0</sup> +*Y<sub>1</sub><sup>0</sup> - Y<sub>i0</sub><sup>0</sup>] = E[Y<sub>i1</sub><sup>1</sup> –*Y<sub>1</sub><sup>0</sup>] + E[*Y<sub>1</sub><sup>0</sup> - Y<sub>i0</sub><sup>0</sup>] = ATT + {Selection Bias}, | | E[Y<sub>i1</sub><sup>1</sup> – Y<sub>i0</sub><sup>0</sup>] = E[Y<sub>i1</sub><sup>1</sup> –*Y<sub>1</sub><sup>0</sup> +*Y<sub>1</sub><sup>0</sup> - Y<sub>i0</sub><sup>0</sup>] = E[Y<sub>i1</sub><sup>1</sup> –*Y<sub>1</sub><sup>0</sup>] + E[*Y<sub>1</sub><sup>0</sup> - Y<sub>i0</sub><sup>0</sup>] = ATT + {Selection Bias}, |
| | | |
− | E [ y < sub > i 1 </sub > < sup > 1 </sup >-y < sub > > i 0 </sub > </sup > 0 </sup > ] = e [ y < sub > i 1 </sub > </sup > 1 </sup >-* y < sub > 1 </sub > </sup > 0 </sup > + y < sub > 1 </sub > < sup > 0 </sup > > 0 </sup > > > y < sub > > i 0 </sub > > > 0 </sup > > 0 </sub > > 0 </sub > > > </sup > > 0 </sub > > > </0 </> > ] = e[ y < sub > i 1 </sub > < sup > 1 </sup >-* y < sub > 1 </sub > < sup > 0 </sup > ]+ e [ * y < sub > 1 </sub > < sup > 0 </sup >-y < sub > i0 </sub > < sup > 0 </sup > ] = ATT + {选择偏差} , | + | E[Y<sub>i1</sub><sup>1</sup> – Y<sub>i0</sub><sup>0</sup>] = E[Y<sub>i1</sub><sup>1</sup> –*Y<sub>1</sub><sup>0</sup> +*Y<sub>1</sub><sup>0</sup> - Y<sub>i0</sub><sup>0</sup>] = E[Y<sub>i1</sub><sup>1</sup> –*Y<sub>1</sub><sup>0</sup>] + E[*Y<sub>1</sub><sup>0</sup> - Y<sub>i0</sub><sup>0</sup>] = ATT + {Selection Bias}, |
| | | |
| where ATT = average treatment effect on the treated <ref>{{cite journal|last1=Imai|first1=Kosuke|title=Misunderstandings between experimentalists and observationalists about causal inference|journal=Journal of the Royal Statistical Society, Series A (Statistics in Society)|date=2006|volume=171|issue=2|pages=481–502|doi=10.1111/j.1467-985X.2007.00527.x|url=http://nrs.harvard.edu/urn-3:HUL.InstRepos:4142695}}</ref> and the second term is the bias introduced when people have the choice to belong to either the ‘treated’ or the ‘control’ group. | | where ATT = average treatment effect on the treated <ref>{{cite journal|last1=Imai|first1=Kosuke|title=Misunderstandings between experimentalists and observationalists about causal inference|journal=Journal of the Royal Statistical Society, Series A (Statistics in Society)|date=2006|volume=171|issue=2|pages=481–502|doi=10.1111/j.1467-985X.2007.00527.x|url=http://nrs.harvard.edu/urn-3:HUL.InstRepos:4142695}}</ref> and the second term is the bias introduced when people have the choice to belong to either the ‘treated’ or the ‘control’ group. |
| | | |
| | | |
− | 其中 ATT = 治疗组的平均治疗效果,第二项是当人们可以选择属于治疗组或对照组时引入的偏倚。 | + | 其中 ATT = 处理组的平均处理效应,第二项是个体选择属于处理组或对照组时引入的偏差。 |
| | | |
| Ignorability, either plain or conditional on some other variables, implies that such selection bias can be ignored, so one can recover (or estimate) the causal effect. | | Ignorability, either plain or conditional on some other variables, implies that such selection bias can be ignored, so one can recover (or estimate) the causal effect. |