更改

跳到导航 跳到搜索
添加7字节 、 2021年6月3日 (四) 17:19
第19行: 第19行:     
对于有向无环图G和表达其可达性的偏序关系≤,它的传递规约也可以看作包含G的<font color="#ff8000"> 覆盖关系 Covering relation </font>中每一条边的G的子图。传递规约在图示有向无环图的偏序关系时十分有用,因为它们比其他具有相同偏序关系的图的边数要少,这简化了绘图。偏序关系的<font color="#ff8000"> 哈斯图 Hasse diagram </font>由将传递规约中的每条边的起点绘制在其终点的下方而得到。<ref>{{citation|title=Graphs, Networks and Algorithms|volume=5|series=Algorithms and Computation in Mathematics|first=Dieter|last=Jungnickel|publisher=Springer|year=2012|isbn=978-3-642-32278-5|pages=92–93|url=https://books.google.com/books?id=PrXxFHmchwcC&pg=PA92}}.</ref>
 
对于有向无环图G和表达其可达性的偏序关系≤,它的传递规约也可以看作包含G的<font color="#ff8000"> 覆盖关系 Covering relation </font>中每一条边的G的子图。传递规约在图示有向无环图的偏序关系时十分有用,因为它们比其他具有相同偏序关系的图的边数要少,这简化了绘图。偏序关系的<font color="#ff8000"> 哈斯图 Hasse diagram </font>由将传递规约中的每条边的起点绘制在其终点的下方而得到。<ref>{{citation|title=Graphs, Networks and Algorithms|volume=5|series=Algorithms and Computation in Mathematics|first=Dieter|last=Jungnickel|publisher=Springer|year=2012|isbn=978-3-642-32278-5|pages=92–93|url=https://books.google.com/books?id=PrXxFHmchwcC&pg=PA92}}.</ref>
 +
    
=== 拓扑排序===
 
=== 拓扑排序===
有向无环图的<font color="#ff8000">拓扑排序Topological ordering</font>为所有边的起点都出现在其终点之前的排序。能构成拓扑排序的图一定没有环,因为环中的一条边必定从排序较后的顶点指向比其排序更前的顶点。<ref name="bang"/>基于此,拓扑排序可以被用来定义有向无环图:当且仅当一个有向图有拓扑排序,它是有向无环图。一般情况下,拓扑排序并非唯一。有向无环图仅仅在存在一条路径可以包含其所有顶点的情况下,有唯一的拓扑排序方式,这时,拓扑排序与它们在这条路径中出现的顺序相同。<ref>{{citation|title=Algorithms|first1=Robert|last1=Sedgewick|author1-link=Robert Sedgewick (computer scientist)|first2=Kevin|last2=Wayne|edition=4th|publisher=Addison-Wesley|year=2011|isbn=978-0-13-276256-4|url=https://books.google.com/books?id=idUdqdDXqnAC&pg=PA598|pages=598–599|contribution=4,2,25 Unique topological ordering}}.</ref>
+
有向无环图的<font color="#ff8000"> 拓扑排序 Topological ordering </font>为所有边的起点都出现在其终点之前的排序。能构成拓扑排序的图一定没有环,因为环中的一条边必定从排序较后的顶点指向比其排序更前的顶点。<ref name="bang"/>基于此,拓扑排序可以被用来定义有向无环图:当且仅当一个有向图有拓扑排序,它是有向无环图。一般情况下,拓扑排序并非唯一。有向无环图仅仅在存在一条路径可以包含其所有顶点的情况下,有唯一的拓扑排序方式,这时,拓扑排序与它们在这条路径中出现的顺序相同。<ref>{{citation|title=Algorithms|first1=Robert|last1=Sedgewick|author1-link=Robert Sedgewick (computer scientist)|first2=Kevin|last2=Wayne|edition=4th|publisher=Addison-Wesley|year=2011|isbn=978-0-13-276256-4|url=https://books.google.com/books?id=idUdqdDXqnAC&pg=PA598|pages=598–599|contribution=4,2,25 Unique topological ordering}}.</ref>
   −
有向无环图的拓扑排序族等同于其可达性的<font color="#ff8000">线性拓展Linear extension</font>族。 <ref>{{citation|title=A Short Course in Discrete Mathematics|series=Dover Books on Computer Science|first1=Edward A.|last1=Bender|first2=S. Gill|last2=Williamson|publisher=Courier Dover Publications|year=2005|isbn=978-0-486-43946-4|page=142|url=https://books.google.com/books?id=iuEoAwAAQBAJ&pg=PA142|contribution=Example 26 (Linear extensions – topological sorts)}}.</ref>因此,偏序关系相同的任意两个图会有相同的拓扑排序集。
+
有向无环图的拓扑排序族等同于其可达性的<font color="#ff8000"> 线性拓展 Linear extension </font>族。 <ref>{{citation|title=A Short Course in Discrete Mathematics|series=Dover Books on Computer Science|first1=Edward A.|last1=Bender|first2=S. Gill|last2=Williamson|publisher=Courier Dover Publications|year=2005|isbn=978-0-486-43946-4|page=142|url=https://books.google.com/books?id=iuEoAwAAQBAJ&pg=PA142|contribution=Example 26 (Linear extensions – topological sorts)}}.</ref>因此,偏序关系相同的任意两个图会有相同的拓扑排序集。
    
=== 组合计数 ===
 
=== 组合计数 ===
387

个编辑

导航菜单