有向图中的<font color="#ff8000"> '''路径 Path''' </font>是不重复的顶点(至少2个)的序列,满足序列中的顶点与序列中相邻的顶点点有边连接; 如果一条路的第一条边的起始顶点与它的最后一条边的结束顶点相同,那么它就形成了一个环。有向无环图即为没有环出现的有向图。<ref name="thul">{{citation|title=Graphs: Theory and Algorithms|first1=K.|last1=Thulasiraman|first2=M. N. S.|last2=Swamy|publisher=John Wiley and Son|year=1992|isbn=978-0-471-51356-8|contribution=5.7 Acyclic Directed Graphs|page=118}}.</ref><ref name="bang">{{citation|title=Digraphs: Theory, Algorithms and Applications|first1=Jørgen|last1=Bang-Jensen|series=Springer Monographs in Mathematics|edition=2nd|publisher=Springer-Verlag|year=2008|isbn=978-1-84800-997-4|contribution=2.1 Acyclic Digraphs|pages=32–34}}.</ref><ref>{{citation|title=Graph theory: an algorithmic approach|first=Nicos|last=Christofides|author-link=Nicos Christofides||publisher=Academic Press|year=1975|pages=170–174}}.</ref>
+
有向图中的<font color="#ff8000"> '''路径 Path''' </font>是不重复的顶点(至少2个)的序列,满足序列中的顶点与序列中相邻的顶点有边连接; 如果一条路的第一条边的起始顶点与它的最后一条边的结束顶点相同,那么它就形成了一个环。有向无环图即为没有环出现的有向图。<ref name="thul">{{citation|title=Graphs: Theory and Algorithms|first1=K.|last1=Thulasiraman|first2=M. N. S.|last2=Swamy|publisher=John Wiley and Son|year=1992|isbn=978-0-471-51356-8|contribution=5.7 Acyclic Directed Graphs|page=118}}.</ref><ref name="bang">{{citation|title=Digraphs: Theory, Algorithms and Applications|first1=Jørgen|last1=Bang-Jensen|series=Springer Monographs in Mathematics|edition=2nd|publisher=Springer-Verlag|year=2008|isbn=978-1-84800-997-4|contribution=2.1 Acyclic Digraphs|pages=32–34}}.</ref><ref>{{citation|title=Graph theory: an algorithmic approach|first=Nicos|last=Christofides|author-link=Nicos Christofides||publisher=Academic Press|year=1975|pages=170–174}}.</ref>