更改

跳到导航 跳到搜索
删除192字节 、 2021年6月9日 (三) 09:41
第23行: 第23行:  
亚里士多德定义了因果关系的分类法,包括质料因、形式因、动力因、目的因。休谟更偏爱反事实,他拒绝了亚里士多德的分类法。有段时间,他否认物体本身具有使得一个物体成为原因而另一个物体成为结果的“力量”。<ref name=":1" />后来,他接受了“如果第一物体还没存在,第二个根本不存在”的观点(“but-for”因果关系)。<ref name=":1" />
 
亚里士多德定义了因果关系的分类法,包括质料因、形式因、动力因、目的因。休谟更偏爱反事实,他拒绝了亚里士多德的分类法。有段时间,他否认物体本身具有使得一个物体成为原因而另一个物体成为结果的“力量”。<ref name=":1" />后来,他接受了“如果第一物体还没存在,第二个根本不存在”的观点(“but-for”因果关系)。<ref name=":1" />
   −
19世纪末,统计学学科开始形成。经过多年努力确定诸如生物遗传等领域的因果规则后,高尔顿引入了'''<font color="#ff8000"> 均值回归 Mean Regression </font>'''的概念(以二年生症候群为缩影),后来这将他引向了非因果的相关性概念。<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=264}} 264]}}
     −
作为一个实证主义者,皮尔逊将因果的概念从许多科学中去除,他认为因果关系是一种无法证明的特殊的关联,并引入相关系数作为关联强度的度量方法。他写道: “作为运动原因的力,与作为成长原因的树神完全一样”,而因果关系只是“现代科学高深奥秘中的迷信”。皮尔逊在伦敦大学学院创立了期刊“Biometrika”和生物识别实验室,该实验室成为了统计领域的全球领军者。<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=264}} 264]}}
+
19世纪末,统计学学科开始形成。经过多年努力确定诸如生物遗传等领域的因果规则后,高尔顿引入了'''<font color="#ff8000"> 均值回归 Mean Regression </font>'''的概念(以二年生症候群为缩影),后来这将他引向了非因果的相关性概念。<ref name=":1" />
 +
 
 +
作为一个实证主义者,皮尔逊将因果的概念从许多科学中去除,他认为因果关系是一种无法证明的特殊的关联,并引入相关系数作为关联强度的度量方法。他写道: “作为运动原因的力,与作为成长原因的树神完全一样”,而因果关系只是“现代科学高深奥秘中的迷信”。皮尔逊在伦敦大学学院创立了期刊“Biometrika”和生物识别实验室,该实验室成为了统计领域的全球领军者。<ref name=":1" />
 +
 
 +
 
 +
1908年,Hardy和Weinberg通过重拾孟德尔遗传律,解决了导致高尔顿放弃因果关系的性状稳定问题。<ref name=":1" />
   −
1908年,Hardy和Weinberg通过重拾孟德尔遗传律,解决了导致高尔顿放弃因果关系的性状稳定问题。<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=264}} 264]}}
      
1921年,Wright的路径分析成为因果模型和因果图的理论雏形。<ref>{{Cite book|url={{google books |plainurl=y |id=yWWEIvNgUQ4C|page=707}} |title=The Oxford Handbook of Causation |volume=1 |editor-last=Beebee |editor-first=Helen|editor-last2=Hitchcock|editor-first2=Christopher|editor-last3=Menzies|editor-first3=Peter|date=2012-01-12|publisher=OUP Oxford|isbn=9780191629464|language=en|first=Samir |last=Okasha |chapter=Causation in Biology|chapter-url=http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199279739.001.0001/oxfordhb-9780199279739-e-0036|doi=10.1093/oxfordhb/9780199279739.001.0001 }}</ref>他开发了这种路径分析方法,试图同时阐明遗传、发育和环境对豚鼠皮毛模式的相对影响。他通过一个分析过程如何解释豚鼠出生体重、子宫内时间和产仔数之间的关系来支持他旁门左道的观点。杰出的统计学家对这些想法的反对使因果关系在接下来的40年中被家畜育种学家之外的科学家所忽略。取而代之的是,科学家们依赖于相关性,一定程度上是在批评Wright的领军统计学家Fisher的授意下。<ref name=":1" />唯一的例外是一名叫Burks的学生,在1926年首先应用路径图来表示中介影响,并断言保持中介变量恒定会引起误差。她可能独立地发明了路径图。<ref name=":1" />
 
1921年,Wright的路径分析成为因果模型和因果图的理论雏形。<ref>{{Cite book|url={{google books |plainurl=y |id=yWWEIvNgUQ4C|page=707}} |title=The Oxford Handbook of Causation |volume=1 |editor-last=Beebee |editor-first=Helen|editor-last2=Hitchcock|editor-first2=Christopher|editor-last3=Menzies|editor-first3=Peter|date=2012-01-12|publisher=OUP Oxford|isbn=9780191629464|language=en|first=Samir |last=Okasha |chapter=Causation in Biology|chapter-url=http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199279739.001.0001/oxfordhb-9780199279739-e-0036|doi=10.1093/oxfordhb/9780199279739.001.0001 }}</ref>他开发了这种路径分析方法,试图同时阐明遗传、发育和环境对豚鼠皮毛模式的相对影响。他通过一个分析过程如何解释豚鼠出生体重、子宫内时间和产仔数之间的关系来支持他旁门左道的观点。杰出的统计学家对这些想法的反对使因果关系在接下来的40年中被家畜育种学家之外的科学家所忽略。取而代之的是,科学家们依赖于相关性,一定程度上是在批评Wright的领军统计学家Fisher的授意下。<ref name=":1" />唯一的例外是一名叫Burks的学生,在1926年首先应用路径图来表示中介影响,并断言保持中介变量恒定会引起误差。她可能独立地发明了路径图。<ref name=":1" />

导航菜单