更改

跳到导航 跳到搜索
添加968字节 、 2021年6月9日 (三) 10:35
第503行: 第503行:     
===课程推荐===
 
===课程推荐===
 +
*[https://campus.swarma.org/course/2526 两套因果框架深度剖析:潜在结果模型与结构因果模型]
 +
 +
::这个视频内容来自[[集智俱乐部读书会]]-因果科学与Causal AI读书会第二季内容的分享,由英国剑桥大学及其学习组博士陆超超详细的阐述了潜在结果模型和结果因果模型,并介绍了两个框架的相互转化规律。
 +
1. 讲述因果推断的两大框架:潜在结果模型和结构因果模型,讨论他们各自的优缺点以及他们之间的联系,详细介绍他们之间的转化规律。
 +
2. 与大家一起深入探讨因果推断中最基本的概念、定理以及它们产生的缘由,了解每个概念背后的故事,从而建立起对因果更全面的感知。
 +
3. 分享它们在不同学科中的具体的应用,包括社会科学、经济学、医学、机器学习等,借助这些应用,进一步启发大家用因果科学思维来思考和解决问题。
 +
 +
 +
 
*[https://campus.swarma.org/course/1937 如何用信息视角理解现代因果模型框架?]
 
*[https://campus.swarma.org/course/1937 如何用信息视角理解现代因果模型框架?]
 
::这个视频内容来自[[集智俱乐部读书会]]-因果科学与Causal AI读书会第一季内容的分享,这个视频为大家串讲因果推理的相关论文,着眼与因果研究的源头,简单介绍哲学中的因果思考。其次重点是用因果之梯(她的信息视角--回答因果问题需要相应的信息)和一个例子,来理解现代因果建模框架;最后梳理因果推理和 AI 领域的融合,以及Causal AI 的强人工智能之路。
 
::这个视频内容来自[[集智俱乐部读书会]]-因果科学与Causal AI读书会第一季内容的分享,这个视频为大家串讲因果推理的相关论文,着眼与因果研究的源头,简单介绍哲学中的因果思考。其次重点是用因果之梯(她的信息视角--回答因果问题需要相应的信息)和一个例子,来理解现代因果建模框架;最后梳理因果推理和 AI 领域的融合,以及Causal AI 的强人工智能之路。

导航菜单