更改

跳到导航 跳到搜索
删除17字节 、 2021年6月10日 (四) 09:52
无编辑摘要
第2行: 第2行:  
|keywords=实验设计,因果推断,可忽略性
 
|keywords=实验设计,因果推断,可忽略性
 
|description=是实验设计的一种特征
 
|description=是实验设计的一种特征
}}
+
|因果科学,因果推断=}}
    
在[[统计学]]中,'''可忽略性'''是实验设计的一种特征,即数据收集方式(以及缺失数据的性质)不依赖于缺失数据。若在给定已观测数据的条件下,表示哪些变量被观测到或缺失的缺失数据指示矩阵与缺失数据独立,则称该数据缺失机制(例如处理分配或抽样调查策略)是“可忽略的”。
 
在[[统计学]]中,'''可忽略性'''是实验设计的一种特征,即数据收集方式(以及缺失数据的性质)不依赖于缺失数据。若在给定已观测数据的条件下,表示哪些变量被观测到或缺失的缺失数据指示矩阵与缺失数据独立,则称该数据缺失机制(例如处理分配或抽样调查策略)是“可忽略的”。
第14行: 第14行:     
== 定义 ==
 
== 定义 ==
可忽略性(或外生性)的简明含义是,当涉及潜在结果(Y)时,我们可以忽略一个人是怎样最终处于一个群体中而非另一个群体中(“处理组”Tx = 1,或“控制组”Tx = 0)。它也被称为无混淆杂性、基于可观测变量的选择或无遗漏变量偏差<ref>{{cite journal|last1=Yamamoto|first1=Teppei|title=Understanding the Past: Statistical Analysis of Causal Attribution|journal=Journal of Political Science|date=2012|volume=56|issue=1|pages=237–256|doi=10.1111/j.1540-5907.2011.00539.x|hdl=1721.1/85887}}</ref>。
+
可忽略性(或外生性)的简明含义是,当涉及潜在结果[math](Y)[/math]时,我们可以忽略一个人是怎样最终处于一个群体中而非另一个群体中(“处理组”Tx = 1,或“控制组”Tx = 0)。它也被称为无混淆杂性、基于可观测变量的选择或无遗漏变量偏差<ref>{{cite journal|last1=Yamamoto|first1=Teppei|title=Understanding the Past: Statistical Analysis of Causal Attribution|journal=Journal of Political Science|date=2012|volume=56|issue=1|pages=237–256|doi=10.1111/j.1540-5907.2011.00539.x|hdl=1721.1/85887}}</ref>。
      第70行: 第70行:     
----
 
----
本中文词条由[[用户:shlay|shlay]]用户参与编译,[[用户:PengWu|PengWu]]参与审校,[[用户:思无涯咿呀咿呀|思无涯咿呀咿呀]]、[[用户:薄荷|薄荷]]编辑,欢迎在讨论页面留言。
+
本中文词条由[[用户:shlay|shlay]]用户参与编译,[[用户:PengWu|PengWu]]参与审校,[[用户:薄荷|薄荷]]编辑,欢迎在讨论页面留言。
       
'''本词条内容源自wikipedia及公开资料,遵守 CC3.0协议。'''
 
'''本词条内容源自wikipedia及公开资料,遵守 CC3.0协议。'''

导航菜单