第42行: |
第42行: |
| | | |
| 区块随机试验通常用于样本量较大的实验,以避免具有重要特征的样本分配不平衡。 在某些对随机试验有严格要求的领域,如临床试验,当没有对导体(conductors)进行盲法处理且区块块大小有限时,分配是可预测的。 分层中的块置换随机试验可能会随着分层数量的增加和样本量的限制而导致分层之间的样本不平衡,例如,有可能找不到符合某些分层特征的样本<ref>{{Cite book|title=Fundamentals of clinical trials|others=Friedman, Lawrence M., 1942-, Furberg, Curt,, DeMets, David L., 1944-, Reboussin, David,, Granger, Christopher B.|date=27 August 2015|isbn=978-3-319-18539-2|edition=Fifth|location=New York|oclc=919463985}}</ref>。 | | 区块随机试验通常用于样本量较大的实验,以避免具有重要特征的样本分配不平衡。 在某些对随机试验有严格要求的领域,如临床试验,当没有对导体(conductors)进行盲法处理且区块块大小有限时,分配是可预测的。 分层中的块置换随机试验可能会随着分层数量的增加和样本量的限制而导致分层之间的样本不平衡,例如,有可能找不到符合某些分层特征的样本<ref>{{Cite book|title=Fundamentals of clinical trials|others=Friedman, Lawrence M., 1942-, Furberg, Curt,, DeMets, David L., 1944-, Reboussin, David,, Granger, Christopher B.|date=27 August 2015|isbn=978-3-319-18539-2|edition=Fifth|location=New York|oclc=919463985}}</ref>。 |
| + | |
| + | ==最小化方法 Minimization method== |
| + | |
| + | In order to guarantee the similarity of each treatment group, the "minimization" method attempts are made, which is more direct than random permuted block within strats. In the minimization method, samples in each stratum are assigned to treatment groups based on the sum of samples in each treatment group, which makes the number of subjects keep balance among the group.<ref name=":0" /> If the sums for multiple treatment groups are the same, simple randomization would be conducted to assign the treatment. In practice, the minimization method needs to follow a daily record of treatment assignments by prognostic factors, which can be done effectively by using a set of index cards to record. The minimization method effectively avoids imbalance among groups but involves less random process than block randomization because the random process is only conducted when the treatment sums are the same. A feasible solution is to apply an additional random list which makes the treatment groups with a smaller sum of marginal totals possess a higher chance (e.g.¾) while other treatments have a lower chance(e.g.¼ ).<ref name=":1">{{Cite journal|last=Pocock|first=S. J.|date=March 1979|title=Allocation of Patients to Treatment in Clinical Trials|journal=Biometrics|volume=35|issue=1|pages=183–197|doi=10.2307/2529944|jstor=2529944|pmid=497334|issn=0006-341X}}</ref> |
| + | 为了保证每个处理组的相似性,尝试了“最小化”方法,这比分层内的随机排列块更直接。在最小化方法中,根据每个处理组中的样本总和将每个层中的样本分配到处理组中,这使得受试者数量在组间保持平衡。<ref name=":0" /> 如果多个治疗组的总和相同,则将进行简单的随机化以分配治疗。在实践中,最小化方法需要根据预后因素(prognostic factors)跟踪治疗分配的每日记录,这可以通过使用一组索引卡进行记录来有效完成。最小化方法有效地避免了组间不平衡,但比块随机化涉及的随机过程更少,因为随机过程仅在治疗的总人数相同时进行。一个可行的解决方案是应用额外的随机列表,这使得具有较小边际总数的总和的治疗组具有更高的机会(例如 ¾),而其他治疗具有较低的机会(例如 ¼)。<ref name=":1">{{Cite journal|last=Pocock|first=S. J.|date=March 1979|title=Allocation of Patients to Treatment in Clinical Trials|journal=Biometrics|volume=35|issue=1|pages=183–197|doi=10.2307/2529944|jstor=2529944|pmid=497334|issn=0006-341X}}</ref> |
| + | |
| + | |
| + | In order to guarantee the similarity of each treatment group, the "minimization" method attempts are made, which is more direct than random permuted block within strats. In the minimization method, samples in each stratum are assigned to treatment groups based on the sum of samples in each treatment group, which makes the number of subjects keep balance among the group. |
| + | |
| + | 为了保证每个处理组之间的相似性,尝试了“最小化”方法,这种方法比层内随机置乱更直接。在最小化方法中,根据每个处理组的样本总和,将每个地层的样本分配给处理组,使处理组的受试者人数保持平衡。 |
| + | |
| + | 为了避免重要特征样本分配不平衡的问题,实验中常采用分块随机化的方法,采样规模较大。在某些严格要求随机化的领域,例如临床试验,当没有导体的盲法和块大小有限时,分配是可以预测的。随着地层数量的增加和样本容量的限制,地层中的块体随机化可能导致地层之间样本的不平衡,例如,有可能找不到符合特定地层特征的样本。 |
| + | |
| + | Stratified random sampling is useful and productive in situations requiring different weightings on specific strata. In this way, the researchers can manipulate the selection mechanisms from each strata to amplify or minimize the desired characteristics in the survey result. |
| + | |
| + | 分层随机抽样在特定地层需要不同权重的情况下是有用的和有效的。通过这种方式,研究人员可以操纵来自每个阶层的选择机制,以便在调查结果中放大或减少所需的特征。 |
| + | |
| + | |
| + | |
| + | Stratified randomization is helpful when researchers intend to seek for associations between two or more strata, as simple random sampling causes a larger chance of unequal representation of target groups. It is also useful when the researchers wish to eliminate confounders in observational studies as stratified random sampling allows the adjustments of covariances and the p-values for more accurate results. |
| + | |
| + | 当研究人员试图寻找两个或多个阶层之间的联系时,分层随机化是有帮助的,因为简单的随机抽样会导致目标群体代表性不平等的可能性更大。当研究人员希望在观察研究中消除混杂因素时,这也是有用的,因为分层随机抽样允许调整协方差和 p 值以获得更准确的结果。 |
| + | |
| + | |
| + | |
| + | |
| + | |
| + | |
| + | |
| + | |
| + | |
| + | |
| + | |
| + | |
| + | |
| + | |
| + | |
| + | |
| + | |
| + | Confounding factors are important to consider in clinical trials |
| + | |
| + | 在临床试验中,混杂因素是需要考虑的重要因素 |
| + | |
| + | |
| + | |
| + | There is also a higher level of statistical accuracy for stratified random sampling compared with simple random sampling, due to the high relevance of elements chosen to represent the population. The step of stratified randomization is extremely important as an attempt to ensure that no bias, delibrate or accidental, affects the representative nature of the patient sample under study. It increases the study power, especially in small clinical trials(n<400), as these known clinical traits stratified are thought to effect the outcomes of the interventions. It helps prevent the occurrence of type I error, which is valued highly in clinical studies. It also has an important effect on sample size for active control equivalence trials and in theory, facilitates subgroup analysis and interim analysis. |
| + | |
| + | 与简单随机抽样相比,分层随机抽样具有更高的统计准确性,因为所选择的元素代表总体具有高度的相关性。分层随机化的步骤是非常重要的,它试图确保没有偏差,取样或偶然,影响研究中患者样本的代表性。它增加了研究力量,特别是在小型临床试验(n < 400) ,因为这些已知的临床特征分层被认为影响干预的结果。它有助于防止 i 型错误的发生,这在临床研究中是很有价值的。它还对主动控制等效试验的样本容量有重要影响,并在理论上简化了亚组分析和中期分析。 |
| + | |
| + | |
| + | The subgroup size is taken to be of the same importance if the data available cannot represent overall subgroup population. In some applications, subgroup size is decided with reference to the amount of data available instead of scaling sample sizes to subgroup size, which would introduce bias in the effects of factors. In some cases that data needs to be stratified by variances, subgroup variances differ significantly, making each subgroup sampling size proportional to the overall subgroup population cannot be guaranteed. |
| + | |
| + | 如果可用的数据不能代表整个分组人口,则子组大小被认为具有同样的重要性。在一些应用中,子群大小是根据可用数据量来决定的,而不是按照子群大小来衡量样本大小,这会在因素的影响中引入偏倚。在某些情况下,数据需要由方差分层,分组方差差异显著,使得每个分组抽样大小与整个分组总体成比例不能得到保证。 |
| + | |
| + | Block randomization is commonly used in the experiment with a relatively big sampling size to avoid the imbalance allocation of samples with important characteristics. In certain fields with strict requests of randomization such as [[clinical trial]]s, the allocation would be predictable when there is no blinding process for conductors and the block size is limited. The blocks permuted randomization in strata could possibly cause an imbalance of samples among strata as the number of strata increases and the sample size is limited, For instance, there is a possibility that no sample is found meeting the characteristic of certain strata.<ref>{{Cite book|title=Fundamentals of clinical trials|others=Friedman, Lawrence M., 1942-, Furberg, Curt,, DeMets, David L., 1944-, Reboussin, David,, Granger, Christopher B.|date=27 August 2015|isbn=978-3-319-18539-2|edition=Fifth|location=New York|oclc=919463985}}</ref> |
| + | |
| + | Stratified sampling can not be applied if the population cannot be completely assigned into strata, which would result in sample sizes proportional to sample available instead of overall subgroup population. |
| + | |
| + | 如果总体不能完全分配到地层中,那么分层抽样就不能应用,这将导致样本大小与可用样本成比例,而不是整个子群总体。 |
| + | |
| + | |
| + | The process of assigning samples into subgroups could involve overlapping if subjects meet the inclusion standard of multiple strata, which could result in a misrepresentation of the population. |
| + | |
| + | 如果受试者符合多个阶层的包含标准,将样本分配到各个子群组的过程可能会涉及重叠,这可能会导致人口的不正当手法引诱。 |
| + | |
| | | |
| | | |