− | 作为一种统计技术,'''<font color="#ff8000"> 匹配 Matching</font>'''通过在'''<font color="#ff8000"> 观察研究 Observational Study</font>'''或'''<font color="#ff8000"> 准实验研究 Quasi-experiment</font>'''(即'''<font color="#ff8000"> 处理 Treatment </font>'''是非随机分配的)中比较已处理和未处理的单元,以评估处理的效果。匹配的目标是,对于每个处理单元,找到一个(或多个)具有相似可观察特征的未处理单元,以评估处理效果。通过处理单元与相似未处理单元的匹配,匹配技术可以比较处理单元与未处理单元的不同结果,从而评估处理效应,减少混杂效应带来的偏差。<ref>{{cite journal | doi=10.2307/2529684 | last=Rubin | first=Donald B. | title=Matching to Remove Bias in Observational Studies | journal=Biometrics | volume=29 | issue=1 | year=1973 | pages=159–183 | jstor=2529684}}</ref><ref>{{cite journal | title=On Stratification, Grouping and Matching | last=Anderson | first=Dallas W. |author2=Kish, Leslie |author3=Cornell, Richard G. | journal=Scandinavian Journal of Statistics | volume=7 | issue=2 | year=1980 | pages=61–66 | jstor=4615774}}</ref><ref>{{cite journal | doi=10.2307/2530417 | title=Matching in Epidemiologic Studies: Validity and Efficiency Considerations | last=Kupper | first=Lawrence L. |author2=Karon, John M. |author3=Kleinbaum, David G. |author4=Morgenstern, Hal |author5= Lewis, Donald K. | journal=Biometrics | volume=37 | issue=2 | year=1981 | pages=271–291 | jstor=2530417 | pmid=7272415| citeseerx=10.1.1.154.1197 }}</ref>'''<font color="#ff8000"> 倾向值匹配 Propensity Score Matching</font>''',一种早期的匹配技术,是作为'''<font color="#ff8000"> 鲁宾因果模型 Rubin Causal Model</font>'''<ref name="Rosenbaum Rubin">{{cite journal |last1=Rosenbaum |first1=Paul R. |last2=Rubin |first2=Donald B. |title=The Central Role of the Propensity Score in Observational Studies for Causal Effects |journal=Biometrika |year=1983 |volume=70 |issue=1 |pages=41–55 |doi=10.1093/biomet/70.1.41 |doi-access=free }}</ref>的一部分发展起来的,但已被证明会增加模型依赖性、偏差、无效性和'''<font color="#32cd32"> 计算量 power </font>''',与其他匹配方法相比不再推荐使用。<ref>{{Cite journal|last1=King|first1=Gary|last2=Nielsen|first2=Richard|date=October 2019|title=Why Propensity Scores Should Not Be Used for Matching|url=https://www.cambridge.org/core/product/identifier/S1047198719000111/type/journal_article|journal=Political Analysis|language=en|volume=27|issue=4|pages=435–454|doi=10.1017/pan.2019.11|issn=1047-1987|doi-access=free}}</ref> | + | 作为一种统计技术,'''匹配 Matching'''通过在'''<font color="#ff8000">观察研究 Observational Study</font>'''或'''<font color="#ff8000">准实验研究 Quasi-experiment</font>'''(即'''<font color="#ff8000"> 处理 Treatment </font>'''是非随机分配的)中比较已处理和未处理的单元,以评估处理的效果。匹配的目标是,对于每个处理单元,找到一个(或多个)具有相似可观察特征的未处理单元,以评估处理效果。通过处理单元与相似未处理单元的匹配,匹配技术可以比较处理单元与未处理单元的不同结果,从而评估处理效应,减少混杂效应带来的偏差。<ref>{{cite journal | doi=10.2307/2529684 | last=Rubin | first=Donald B. | title=Matching to Remove Bias in Observational Studies | journal=Biometrics | volume=29 | issue=1 | year=1973 | pages=159–183 | jstor=2529684}}</ref><ref>{{cite journal | title=On Stratification, Grouping and Matching | last=Anderson | first=Dallas W. |author2=Kish, Leslie |author3=Cornell, Richard G. | journal=Scandinavian Journal of Statistics | volume=7 | issue=2 | year=1980 | pages=61–66 | jstor=4615774}}</ref><ref>{{cite journal | doi=10.2307/2530417 | title=Matching in Epidemiologic Studies: Validity and Efficiency Considerations | last=Kupper | first=Lawrence L. |author2=Karon, John M. |author3=Kleinbaum, David G. |author4=Morgenstern, Hal |author5= Lewis, Donald K. | journal=Biometrics | volume=37 | issue=2 | year=1981 | pages=271–291 | jstor=2530417 | pmid=7272415| citeseerx=10.1.1.154.1197 }}</ref>'''<font color="#ff8000"> 倾向值匹配 Propensity Score Matching</font>''',一种早期的匹配技术,是作为'''<font color="#ff8000"> 鲁宾因果模型 Rubin Causal Model</font>'''<ref name="Rosenbaum Rubin">{{cite journal |last1=Rosenbaum |first1=Paul R. |last2=Rubin |first2=Donald B. |title=The Central Role of the Propensity Score in Observational Studies for Causal Effects |journal=Biometrika |year=1983 |volume=70 |issue=1 |pages=41–55 |doi=10.1093/biomet/70.1.41 |doi-access=free }}</ref>的一部分发展起来的,但已被证明会增加模型依赖性、偏差、无效性和'''<font color="#32cd32"> 计算量 power </font>''',与其他匹配方法相比不再推荐使用。<ref>{{Cite journal|last1=King|first1=Gary|last2=Nielsen|first2=Richard|date=October 2019|title=Why Propensity Scores Should Not Be Used for Matching|url=https://www.cambridge.org/core/product/identifier/S1047198719000111/type/journal_article|journal=Political Analysis|language=en|volume=27|issue=4|pages=435–454|doi=10.1017/pan.2019.11|issn=1047-1987|doi-access=free}}</ref> |
| *{{cite book |last1=Angrist |first1=Joshua D. |last2=Pischke |first2=Jörn-Steffen |chapter=Regression Meets Matching |title=Mostly Harmless Econometrics: An Empiricist's Companion |publisher=Princeton University Press |year=2009 |isbn=978-0-691-12034-8 |pages=69–80 }} | | *{{cite book |last1=Angrist |first1=Joshua D. |last2=Pischke |first2=Jörn-Steffen |chapter=Regression Meets Matching |title=Mostly Harmless Econometrics: An Empiricist's Companion |publisher=Princeton University Press |year=2009 |isbn=978-0-691-12034-8 |pages=69–80 }} |