更改

删除57,224字节 、 2021年7月2日 (五) 13:44
无编辑摘要
第10行: 第10行:       −
 
+
{{Complex systems}}
 
在[[哲学]]、[[系统论]]、科学和艺术中,当一个实体被观察到具有其所有组成部分本身没有的属性时,'''涌现''' '''emergence''' 就出现了。这些属性或行为只有当各个部分在一个更广泛的整体中相互作用时才会涌现。例如,当一辆自行车和骑手互动时,平稳的向前运动就出现了,但是两个部分都不能独自产生这种行为。
 
在[[哲学]]、[[系统论]]、科学和艺术中,当一个实体被观察到具有其所有组成部分本身没有的属性时,'''涌现''' '''emergence''' 就出现了。这些属性或行为只有当各个部分在一个更广泛的整体中相互作用时才会涌现。例如,当一辆自行车和骑手互动时,平稳的向前运动就出现了,但是两个部分都不能独自产生这种行为。
    
涌现的概念在'''整合层次理论 theories of integrative levels''' 和'''复杂系统 theories of complex systems''' 理论中扮处于核心地位。例如,生物学所研究的生命现象是化学的一个涌现特性,而心理现象是从生物的神经生物学现象中涌现出的。
 
涌现的概念在'''整合层次理论 theories of integrative levels''' 和'''复杂系统 theories of complex systems''' 理论中扮处于核心地位。例如,生物学所研究的生命现象是化学的一个涌现特性,而心理现象是从生物的神经生物学现象中涌现出的。
   −
在哲学中,强调涌现特性的理论被称为'''[[涌现论/涌现主义]] emergentism'''。几乎所有涌现主义的叙述都包括一种认识论意义或本体论意义的'''不可化约性 irreducibility'''<ref name="Wong" />。
+
在哲学中,强调涌现特性的理论被称为'''[[涌现论/涌现主义]] emergentism'''<ref name=Wong/>。几乎所有涌现主义的叙述都包括一种认识论意义或本体论意义的'''不可化约性 irreducibility'''<ref name="Wong" />。
          
== 在哲学上  ==
 
== 在哲学上  ==
 
+
{{Main|Emergentism}}
 
哲学家通常把涌现理解为一种对系统特性的发生学主张。在这个语境里,系统的涌现特性不是系统的任何组件的属性,但仍然是整个系统的一个特征。[[尼古拉·哈特曼]] Nicolai Hartmann (1882-1950) ,首批写出涌现论的现代哲学家之一,把这种现象称为''categorial novum'' (新的范畴)。
 
哲学家通常把涌现理解为一种对系统特性的发生学主张。在这个语境里,系统的涌现特性不是系统的任何组件的属性,但仍然是整个系统的一个特征。[[尼古拉·哈特曼]] Nicolai Hartmann (1882-1950) ,首批写出涌现论的现代哲学家之一,把这种现象称为''categorial novum'' (新的范畴)。
    
=== 定义 ===
 
=== 定义 ===
This concept of emergence dates from at least the time of [[Aristotle]].<ref name="Meta">Aristotle, ''[[Metaphysics (Aristotle)]]'', Book Η 1045a 8–10: "... the totality is not, as it were, a mere heap, but the whole is something besides the parts ...", i.e., the whole is other than the sum of the parts.</ref> The many scientists and philosophers<ref>
+
涌现的概念至少在亚里士多德时代就已经存在了<ref name="Meta">Aristotle, ''[[Metaphysics (Aristotle)]]'', Book Η 1045a 8–10: "... the totality is not, as it were, a mere heap, but the whole is something besides the parts ...", i.e., the whole is other than the sum of the parts.</ref>。许多科学家和哲学家<ref>
 
{{cite book
 
{{cite book
 
  | last1 = Winning
 
  | last1 = Winning
第51行: 第51行:  
}}
 
}}
 
</ref>
 
</ref>
who have written on the concept include [[John Stuart Mill]] (''[[Composition of Causes]]'', 1843)<ref>"The chemical combination of two substances produces, as is well known, a third substance with properties entirely different from those of either of the two substances separately, or of both of them taken together."</ref> and [[Julian Huxley]]<ref>Julian Huxley: "now and again there is a sudden rapid passage to a totally new and more comprehensive type of order or organization, with quite new emergent properties, and involving quite new methods of further evolution" {{Harv|Huxley|Huxley|1947|p=120}}</ref> (1887-1975).
+
写过关于这个概念的文章,其中包括约翰·斯图尔特·密尔 John Stuart Mill <ref>"The chemical combination of two substances produces, as is well known, a third substance with properties entirely different from those of either of the two substances separately, or of both of them taken together."</ref>和朱利安 · 赫胥黎 Julian Huxley <ref>Julian Huxley: "now and again there is a sudden rapid passage to a totally new and more comprehensive type of order or organization, with quite new emergent properties, and involving quite new methods of further evolution" {{Harv|Huxley|Huxley|1947|p=120}}</ref> 。
 
  −
 
  −
涌现的概念至少在亚里士多德时代就已经存在了<ref name="Meta">Aristotle, ''[[Metaphysics (Aristotle)]]'', Book Η 1045a 8–10: "... the totality is not, as it were, a mere heap, but the whole is something besides the parts ...", i.e., the whole is other than the sum of the parts.</ref>。许多科学家和哲学家<ref>
  −
{{cite book
  −
| last1 = Winning
  −
| first1 = Jason
  −
| last2 = Bechtel
  −
| first2 = William
  −
| author-link2 = William Bechtel
  −
| chapter = Being emergence vs. pattern emergence: complexity, control, and goal-directedness in biological systems
  −
| chapter-url = https://philpapers.org/rec/WINBEV
  −
| editor1-last = Gibb
  −
| editor1-first = Sophie
  −
| editor2-last = Hendry
  −
| editor2-first = Robin Findlay
  −
| editor3-last = Lancaster
  −
| editor3-first = Tom
  −
| title = The Routledge Handbook of Emergence
  −
| url = https://books.google.com/books?id=0Tz3DwAAQBAJ
  −
| series = Routledge Handbooks in Philosophy
  −
| location = Abingdon
  −
| publisher = Routledge
  −
| date = 2019
  −
| page = 134
  −
| isbn = 9781317381501
  −
| access-date = 25 October 2020
  −
| quote = Emergence is much discussed by both philosophers and scientists.
  −
}}
  −
</ref>写过关于这个概念的文章,其中包括 约翰·斯图尔特·密尔 John Stuart Mill <ref>"The chemical combination of two substances produces, as is well known, a third substance with properties entirely different from those of either of the two substances separately, or of both of them taken together."</ref>和朱利安 · 赫胥黎 Julian Huxley <ref>Julian Huxley: "now and again there is a sudden rapid passage to a totally new and more comprehensive type of order or organization, with quite new emergent properties, and involving quite new methods of further evolution" {{Harv|Huxley|Huxley|1947|p=120}}</ref> 。
        −
哲学家 g· h·刘易斯 (g. h. Lewes) 在1875年创造了“涌现”(emergent)一词
+
哲学家 g· h·刘易斯 (g. h. Lewes) 在1875年创造了“涌现”(emergent)一词:
 
  −
<blockquote>Every resultant is either a sum or a difference of the co-operant forces; their sum, when their directions are the same – their difference, when their directions are contrary. Further, every resultant is clearly traceable in its components, because these are [[homogeneous]] and [[Commensurability (philosophy of science)|commensurable]]. It is otherwise with emergents, when, instead of adding measurable motion to measurable motion, or things of one kind to other individuals of their kind, there is a co-operation of things of unlike kinds. The emergent is unlike its components insofar as these are incommensurable, and it cannot be reduced to their sum or their difference.
  −
 
      
每个合力要么是共同作用力的和,要么是共同作用力的差; 当它们的方向相同时,是它们的和——当它们的方向相反时,则是它们的差。 此外,每个成果在其组成部分中都可以清楚地朔源,因为这些组成部分是同质的和可公度的。涌现的情况与此不同,它们既不是在动量中再增加动量,也不是在同类个体中增加一种个体,而是在不同种类的事物之间进行合作。涌现不同于其组成部分,因为这些部分是不可通约的,不能被还原为它们的总和或差。 <ref>
 
每个合力要么是共同作用力的和,要么是共同作用力的差; 当它们的方向相同时,是它们的和——当它们的方向相反时,则是它们的差。 此外,每个成果在其组成部分中都可以清楚地朔源,因为这些组成部分是同质的和可公度的。涌现的情况与此不同,它们既不是在动量中再增加动量,也不是在同类个体中增加一种个体,而是在不同种类的事物之间进行合作。涌现不同于其组成部分,因为这些部分是不可通约的,不能被还原为它们的总和或差。 <ref>
第106行: 第74行:  
</blockquote>
 
</blockquote>
   −
In 1999, economist Jeffrey Goldstein provided a current definition of emergence in the journal ''Emergence''.<ref name="Goldstein1999">{{cite journal|last1= Goldstein|first1= Jeffrey|title= Emergence as a Construct: History and Issues|journal= Emergence|date= March 1999|volume= 1|issue= 1|pages= 49–72|doi= 10.1207/s15327000em0101_4}}</ref> Goldstein initially defined emergence as: "the arising of novel and coherent structures, patterns and properties during the process of [[self-organization]] in complex systems".
+
1999年,经济学家杰弗里•戈尔茨坦(Jeffrey Goldstein) 在《涌现》(Emergence)杂志上提出了现有的对“涌现”的定义<ref name="Goldstein1999">{{cite journal |last1= Goldstein |first1= Jeffrey |title= Emergence as a Construct: History and Issues |journal= Emergence |date= March 1999 |volume= 1 |issue= 1 |pages= 49–72 |doi= 10.1207/s15327000em0101_4}}</ref>。戈尔茨坦最初将涌现定义为:“在复杂系统自组织过程中产生的新颖而连贯的结构、模式和性质”。
 
  −
In 1999, economist Jeffrey Goldstein provided a current definition of emergence in the journal Emergence. Goldstein initially defined emergence as: "the arising of novel and coherent structures, patterns and properties during the process of self-organization in complex systems".
  −
 
  −
1999年,经济学家杰弗里•戈尔茨坦(Jeffrey Goldstein) 在《涌现》(Emergence)杂志上提出了现有的对“涌现”的定义。戈尔茨坦最初将涌现定义为: “在复杂系统自组织过程中产生的新颖而连贯的结构、模式和性质(the arising of novel and coherent structures, patterns and properties during the process of self-organization in complex systems)”。
  −
 
  −
 
  −
In 2002 systems scientist [[Peter Corning]] described the qualities of Goldstein's definition in more detail:
  −
 
  −
In 2002 systems scientist Peter Corning described the qualities of Goldstein's definition in more detail:
      
2002年,系统科学家彼得·康宁(Peter Corning)更详细地描述了戈尔茨坦的定义:
 
2002年,系统科学家彼得·康宁(Peter Corning)更详细地描述了戈尔茨坦的定义:
第128行: 第87行:  
<blockquote><span id="CorningDefn" class="citation">
 
<blockquote><span id="CorningDefn" class="citation">
 
这些规则,或者说定律,没有有效的因果关系,它们实际上并不‘产生’任何东西。它们只是用来描述自然界中的规律性和一致性关系。国际象棋游戏说明了为什么任何关于出现和进化的法则和规则都是不充分的。即使在国际象棋游戏中,你也不能用这些规则来预测“历史”——也就是说,任何给定游戏进程都不能被预测。事实上,你甚至无法可靠地预测下一步棋的走法。为什么?因为“系统”涉及的不仅仅是游戏规则。它还包括玩家及其在每个选择点对大量可用选项做出决策。国际象棋是不可避免地具有历史性,尽管它也受到一系列规则的约束和塑造,在此之上更不用说物理定律了。更重要的是,国际象棋的游戏还受到目的性,[[控制论]]],反馈驱动的影响。它不仅仅是一个自我有序的过程,它还包括一个有组织的、“有目的的”活动。
 
这些规则,或者说定律,没有有效的因果关系,它们实际上并不‘产生’任何东西。它们只是用来描述自然界中的规律性和一致性关系。国际象棋游戏说明了为什么任何关于出现和进化的法则和规则都是不充分的。即使在国际象棋游戏中,你也不能用这些规则来预测“历史”——也就是说,任何给定游戏进程都不能被预测。事实上,你甚至无法可靠地预测下一步棋的走法。为什么?因为“系统”涉及的不仅仅是游戏规则。它还包括玩家及其在每个选择点对大量可用选项做出决策。国际象棋是不可避免地具有历史性,尽管它也受到一系列规则的约束和塑造,在此之上更不用说物理定律了。更重要的是,国际象棋的游戏还受到目的性,[[控制论]]],反馈驱动的影响。它不仅仅是一个自我有序的过程,它还包括一个有组织的、“有目的的”活动。
</span><ref name = Corning/>
+
</span><ref name = Corning/></blockquote>
    
===强涌现和弱涌现===
 
===强涌现和弱涌现===
第135行: 第94行:     
这两个概念之间的一些共同点是,涌现与随着系统发展过程中产生的新特性有关,也就是说,这些新特性不包含在其系统组成部分或先前系统状态中。另外,它假设这些属性是[[伴生属性]],而不是形而上学上的原始属性。
 
这两个概念之间的一些共同点是,涌现与随着系统发展过程中产生的新特性有关,也就是说,这些新特性不包含在其系统组成部分或先前系统状态中。另外,它假设这些属性是[[伴生属性]],而不是形而上学上的原始属性。
      
弱涌现描述了由于元素层次上的相互作用而在系统中产生的新特性。然而,贝道规定,只有通过观察或模拟系统才能确定系统的涌现性质,而不能通过任何[[还原论]]分析过程来确定。因此,新出现的属性是与规模相关的:它们只有在系统足够大,能够展现这种现象时才能观察到。混乱、不可预知的行为可以看作是一种涌现现象,而在微观尺度上,组成部分的行为可以是完全确定的。
 
弱涌现描述了由于元素层次上的相互作用而在系统中产生的新特性。然而,贝道规定,只有通过观察或模拟系统才能确定系统的涌现性质,而不能通过任何[[还原论]]分析过程来确定。因此,新出现的属性是与规模相关的:它们只有在系统足够大,能够展现这种现象时才能观察到。混乱、不可预知的行为可以看作是一种涌现现象,而在微观尺度上,组成部分的行为可以是完全确定的。
  −
  −
[[Mark Bedau|Bedau]] notes that weak emergence is not a universal metaphysical solvent, as the hypothesis that consciousness is weakly emergent would not resolve the traditional philosophical questions about the physicality of consciousness. However, Bedau concludes that adopting this view would provide a precise notion that emergence is involved in consciousness, and second, the notion of weak emergence is metaphysically benign. {{Harv|Bedau|1997}}
  −
  −
Bedau notes that weak emergence is not a universal metaphysical solvent, as the hypothesis that consciousness is weakly emergent would not resolve the traditional philosophical questions about the physicality of consciousness. However, Bedau concludes that adopting this view would provide a precise notion that emergence is involved in consciousness, and second, the notion of weak emergence is metaphysically benign.
      
贝道指出,弱涌现不是一种普遍的形而上学的万金油概念(universal metaphysical solvent),因为意识是弱涌现的假设不能解决关于意识的物质性的传统哲学问题。然而,贝道的结论是,采用这种观点将提供一个精确的概念,即涌现是包含在意识中的,其次,弱涌现的概念在形而上学上是良性的(the notion of weak emergence is metaphysically benign)。
 
贝道指出,弱涌现不是一种普遍的形而上学的万金油概念(universal metaphysical solvent),因为意识是弱涌现的假设不能解决关于意识的物质性的传统哲学问题。然而,贝道的结论是,采用这种观点将提供一个精确的概念,即涌现是包含在意识中的,其次,弱涌现的概念在形而上学上是良性的(the notion of weak emergence is metaphysically benign)。
    
  - [[用户:Qige96|Ricky]] "universal metaphysical solvent"和"the notion of weak emergence is metaphysically benign"这两句需要有哲学素养的审校者校正
 
  - [[用户:Qige96|Ricky]] "universal metaphysical solvent"和"the notion of weak emergence is metaphysically benign"这两句需要有哲学素养的审校者校正
  −
Strong emergence describes the direct causal action of a high-level system upon its components; qualities produced this way are [[irreducible (philosophy)|irreducible]] to the system's constituent parts {{Harv|Laughlin|2005}}. The whole is other than the sum of its parts. An example from physics of such emergence is water, which appears unpredictable even after an exhaustive study of the properties of its constituent atoms of hydrogen and oxygen.<ref>{{cite book|last= Luisi|first= Pier L.|title= The Emergence of Life: From Chemical Origins to Synthetic Biology|year= 2006|publisher= Cambridge University Press|location= Cambridge, England|isbn= 978-0521821179|page= 119|url= http://www.cambridge.org/us/academic/subjects/chemistry/organic-chemistry/emergence-life-chemical-origins-synthetic-biology|url-status=live|archiveurl= https://web.archive.org/web/20151117023700/http://www.cambridge.org/us/academic/subjects/chemistry/organic-chemistry/emergence-life-chemical-origins-synthetic-biology|archivedate= 2015-11-17}}</ref> It follows then that no simulation of the system can exist, for such a simulation would itself constitute a reduction of the system to its constituent parts. {{Harv|Bedau|1997}}.
  −
  −
Strong emergence describes the direct causal action of a high-level system upon its components; qualities produced this way are irreducible to the system's constituent parts . The whole is other than the sum of its parts. An example from physics of such emergence is water, which appears unpredictable even after an exhaustive study of the properties of its constituent atoms of hydrogen and oxygen. It follows then that no simulation of the system can exist, for such a simulation would itself constitute a reduction of the system to its constituent parts. .
      
强涌现描述了一个高层次系统对其组成部分的直接因果作用:由强涌现产生的特性不能还原为系统的组成部分。整体不是各部分的总和。出现这种现象的物理学例子是:即使对水的组成原子氢和氧的性质进行了详尽的研究,水的形成也显得不可预测<ref>{{cite book|last= Luisi|first= Pier L.|title= The Emergence of Life: From Chemical Origins to Synthetic Biology|year= 2006|publisher= Cambridge University Press|location= Cambridge, England|isbn= 978-0521821179|page= 119|url= http://www.cambridge.org/us/academic/subjects/chemistry/organic-chemistry/emergence-life-chemical-origins-synthetic-biology|url-status=live|archiveurl= https://web.archive.org/web/20151117023700/http://www.cambridge.org/us/academic/subjects/chemistry/organic-chemistry/emergence-life-chemical-origins-synthetic-biology|archivedate= 2015-11-17}}</ref>。因此,不可能存在任何对系统的仿真,能把系统还原成其组成部分。
 
强涌现描述了一个高层次系统对其组成部分的直接因果作用:由强涌现产生的特性不能还原为系统的组成部分。整体不是各部分的总和。出现这种现象的物理学例子是:即使对水的组成原子氢和氧的性质进行了详尽的研究,水的形成也显得不可预测<ref>{{cite book|last= Luisi|first= Pier L.|title= The Emergence of Life: From Chemical Origins to Synthetic Biology|year= 2006|publisher= Cambridge University Press|location= Cambridge, England|isbn= 978-0521821179|page= 119|url= http://www.cambridge.org/us/academic/subjects/chemistry/organic-chemistry/emergence-life-chemical-origins-synthetic-biology|url-status=live|archiveurl= https://web.archive.org/web/20151117023700/http://www.cambridge.org/us/academic/subjects/chemistry/organic-chemistry/emergence-life-chemical-origins-synthetic-biology|archivedate= 2015-11-17}}</ref>。因此,不可能存在任何对系统的仿真,能把系统还原成其组成部分。
  −
      
====拒绝区分====
 
====拒绝区分====
  −
However, biologist Peter Corning has asserted that "the debate about whether or not the whole can be predicted from the properties of the parts misses the point. Wholes produce unique combined effects, but many of these effects may be co-determined by the context and the interactions between the whole and its environment(s)" {{Harv|Corning|2002}}. In accordance with his '''Synergism Hypothesis''' {{Harv|Corning 1983|2005}}, Corning also stated: "It is the [[synergistic]] effects produced by wholes that are the very cause of the evolution of complexity in nature." Novelist [[Arthur Koestler]] used the metaphor of [[Janus]] (a symbol of the unity underlying complements like open/shut, peace/war) to illustrate how the two perspectives (strong vs. weak or [[holistic]] vs. [[reductionistic]]) should be treated as non-exclusive, and should work together to address the issues of emergence {{Harv|Koestler|1969}}. Theoretical physicist PW Anderson states it this way:
  −
  −
However, biologist Peter Corning has asserted that "the debate about whether or not the whole can be predicted from the properties of the parts misses the point. Wholes produce unique combined effects, but many of these effects may be co-determined by the context and the interactions between the whole and its environment(s)" . In accordance with his Synergism Hypothesis , Corning also stated: "It is the synergistic effects produced by wholes that are the very cause of the evolution of complexity in nature." Novelist Arthur Koestler used the metaphor of Janus (a symbol of the unity underlying complements like open/shut, peace/war) to illustrate how the two perspectives (strong vs. weak or holistic vs. reductionistic) should be treated as non-exclusive, and should work together to address the issues of emergence . Theoretical physicist PW Anderson states it this way:
  −
   
然而,生物学家彼得·康宁断言,“关于是否可以从组成部分的特性来预测整体特性的争论并没有抓住要点。整体可以产生独特的组合效应,但其中许多效应可能由整体及其环境之间的相互作用共同决定”。根据他的协同论假说,康宁还指出: “正是整体产生的协同效应才是自然界复杂性进化的根本原因。小说家亚瑟·凯斯特勒用“两面神(Janus)”隐喻(两面神是开/关、和平/战争等潜在互补统一的象征)来说明两种观点(强涌现与弱涌现、整体论与还原论)应该如何被视不独立存在的,并且应该一起解决涌现的问题。理论物理学家P.W.安德森是这样说的:
 
然而,生物学家彼得·康宁断言,“关于是否可以从组成部分的特性来预测整体特性的争论并没有抓住要点。整体可以产生独特的组合效应,但其中许多效应可能由整体及其环境之间的相互作用共同决定”。根据他的协同论假说,康宁还指出: “正是整体产生的协同效应才是自然界复杂性进化的根本原因。小说家亚瑟·凯斯特勒用“两面神(Janus)”隐喻(两面神是开/关、和平/战争等潜在互补统一的象征)来说明两种观点(强涌现与弱涌现、整体论与还原论)应该如何被视不独立存在的,并且应该一起解决涌现的问题。理论物理学家P.W.安德森是这样说的:
   −
<blockquote>The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe. The constructionist hypothesis breaks down when confronted with the twin difficulties of scale and complexity. At each level of complexity entirely new properties appear. Psychology is not applied biology, nor is biology applied chemistry. We can now see that the whole becomes not merely more, but very different from the sum of its parts .</blockquote>
+
<blockquote>把一切都简化为简单的基本定律的能力并不意味着从这些定律出发并重建宇宙的能力。当面对规模和复杂性的双重困难时,建构主义的假设就失败了。在复杂性的每个层级上,都会出现全新的属性。心理学不是应用生物学,生物学也不是应用化学。我们现在可以看到,整体不仅变得更多,而且与各部分的总和大不相同。</blockquote>
 
  −
把一切都简化为简单的基本定律的能力并不意味着从这些定律出发并重建宇宙的能力。当面对规模和复杂性的双重困难时,建构主义的假设就失败了。在复杂性的每个层级上,都会出现全新的属性。心理学不是应用生物学,生物学也不是应用化学。我们现在可以看到,整体不仅变得更多,而且与各部分的总和大不相同。
  −
</blockquote>
      
====强涌现的可能性====
 
====强涌现的可能性====
  −
Some thinkers question the plausibility of strong emergence as contravening our usual understanding of physics. Mark A. Bedau observes:
  −
  −
Some thinkers question the plausibility of strong emergence as contravening our usual understanding of physics. Mark A. Bedau observes:
  −
   
一些思想家质疑强涌现的合理性,认为它违背了我们对物理学的通常理解。马克·贝道观察到:  
 
一些思想家质疑强涌现的合理性,认为它违背了我们对物理学的通常理解。马克·贝道观察到:  
   −
<blockquote>Although strong emergence is logically possible, it is uncomfortably like magic. How does an irreducible but supervenient downward causal power arise, since by definition it cannot be due to the aggregation of the micro-level potentialities? Such causal powers would be quite unlike anything within our scientific ken. This not only indicates how they will discomfort reasonable forms of materialism. Their mysteriousness will only heighten the traditional worry that emergence entails illegitimately getting something from nothing.
+
<blockquote>尽管强涌现在逻辑上是可能的,但它就像魔术一样令人难以信服。既然从定义上看,它不可能是由于微观层面可能性的聚集而成,那么一种不可还原却又伴随着向下的因果律是如何产生的呢?这种因果与我们科学知识范围内的任何事物都完全不同。这不仅将使得唯物主义者感到不适,它们的神秘特性也会加剧一种传统的担忧,即涌现会引发无中生有的想法。<ref name = Bedau>(Bedau 1997)</ref></blockquote>
 
  −
尽管强涌现在逻辑上是可能的,但它就像魔术一样令人难以信服。既然从定义上看,它不可能是由于微观层面可能性的聚集而成,那么一种不可还原却又伴随着向下的因果律是如何产生的呢?这种因果与我们科学知识范围内的任何事物都完全不同。这不仅将使得唯物主义者感到不适,它们的神秘特性也会加剧一种传统的担忧,即涌现会引发无中生有的想法。<ref name = Bedau>(Bedau 1997)</ref>
  −
</blockquote>
  −
 
  −
 
  −
 
  −
Strong emergence can be criticized for being causally [[Overdetermination|overdetermined]]. The canonical example concerns emergent mental states (M and M∗) that supervene on physical states (P and P∗) respectively. Let M and M∗ be emergent properties. Let M∗ supervene on base property P∗. What happens when M causes M∗? [[Jaegwon Kim]] says:
  −
 
  −
Strong emergence can be criticized for being causally overdetermined. The canonical example concerns emergent mental states (M and M∗) that supervene on physical states (P and P∗) respectively. Let M and M∗ be emergent properties. Let M∗ supervene on base property P∗. What happens when M causes M∗? Jaegwon Kim says:
  −
 
      
强涌现因为'''过度决定 overdetermined'''而被批评(过度决定就是一个事物背后有多个相互矛盾的决定因素的情况。拿''超定方程组''举例:一个方程组只有一个未知量,却有两个方程,每个方程都能单独解出这个未知量,但两个方程的解却不一样,导致这个方程组无解。)。有一个典型的例子:现有涌现出来的两个心理状态(M 和 M) ,它们分别在物理状态(P和 P*)上涌现出来的。则当 M 导致 M* 时会发生什么?Jaegwon Kim 表示:
 
强涌现因为'''过度决定 overdetermined'''而被批评(过度决定就是一个事物背后有多个相互矛盾的决定因素的情况。拿''超定方程组''举例:一个方程组只有一个未知量,却有两个方程,每个方程都能单独解出这个未知量,但两个方程的解却不一样,导致这个方程组无解。)。有一个典型的例子:现有涌现出来的两个心理状态(M 和 M) ,它们分别在物理状态(P和 P*)上涌现出来的。则当 M 导致 M* 时会发生什么?Jaegwon Kim 表示:
  −
<blockquote>In our schematic example above, we concluded that M causes M∗ by causing P∗. So M causes P∗. Now, M, as an emergent, must itself have an emergence base property, say P. Now we face a critical question: if an emergent, M, emerges from basal condition P, why cannot P displace M as a cause of any putative effect of M? Why cannot P do all the work in explaining why any alleged effect of M occurred? If causation is understood as nomological (law-based) sufficiency, P, as M's emergence base, is nomologically sufficient for it, and M, as P∗'s cause, is nomologically sufficient for P∗. It follows that P is nomologically sufficient for P∗ and hence qualifies as its cause…If M is somehow retained as a cause, we are faced with the highly implausible consequence that every case of downward causation involves overdetermination (since P remains a cause of P∗ as well). Moreover, this goes against the spirit of emergentism in any case: emergents are supposed to make distinctive and novel causal contributions.<ref>{{cite journal | last1 = Kim | first1 = Jaegwon | year = 2016 | title = Emergence: Core ideas and issues | url = | journal = Synthese | volume = 151 | issue = 3| pages = 547–59 | doi = 10.1007/s11229-006-9025-0 }}</ref></blockquote>
  −
  −
<blockquote>In our schematic example above, we concluded that M causes M∗ by causing P∗. So M causes P∗. Now, M, as an emergent, must itself have an emergence base property, say P. Now we face a critical question: if an emergent, M, emerges from basal condition P, why cannot P displace M as a cause of any putative effect of M? Why cannot P do all the work in explaining why any alleged effect of M occurred? If causation is understood as nomological (law-based) sufficiency, P, as M's emergence base, is nomologically sufficient for it, and M, as P∗'s cause, is nomologically sufficient for P∗. It follows that P is nomologically sufficient for P∗ and hence qualifies as its cause…If M is somehow retained as a cause, we are faced with the highly implausible consequence that every case of downward causation involves overdetermination (since P remains a cause of P∗ as well). Moreover, this goes against the spirit of emergentism in any case: emergents are supposed to make distinctive and novel causal contributions.
      
在我们上面的例子中,我们得出结论,心理状态 M 引起的另一个心理状态 M * 对应着微观的物理状态 P* ,所以我们可以说 M 引起 P∗。现在,M 作为一个涌现现象,本身必须有一个底层的基本性质,比如 P。 现在我们面临一个关键的问题: 如果一个涌现现象M出现在基础条件 P下,为什么P不能作为M的任何假定影响的原因?为什么 P 不能充分解释 M 引发的其他效应呢?如果因果关系被理解为法理上(基于规则)的充分性,那么 P,作为 M 的涌现基础,同样是法理充分的。而M作为 P* 的原因,对于P*也是法理上充分的。于是出现了P对于P*也是法理有效的,并因此能成为 P* 的理由。如果 M 以某种方式作为原因被保留下来,我们就会面临一个非常难以置信的结果,那就是每一个向下的因果关系都牵涉到过度决定(因为 P 也是 P * 的原因)。此外,这在任何情况下都与涌现主义的精神背道而驰: 涌现主义者应该做出独特而新颖的因果贡献。.<ref>{{cite journal | last1 = Kim | first1 = Jaegwon | year = 2016 | title = Emergence: Core ideas and issues | url = | journal = Synthese | volume = 151 | issue = 3| pages = 547–59 | doi = 10.1007/s11229-006-9025-0 }}</ref> </blockquote>
 
在我们上面的例子中,我们得出结论,心理状态 M 引起的另一个心理状态 M * 对应着微观的物理状态 P* ,所以我们可以说 M 引起 P∗。现在,M 作为一个涌现现象,本身必须有一个底层的基本性质,比如 P。 现在我们面临一个关键的问题: 如果一个涌现现象M出现在基础条件 P下,为什么P不能作为M的任何假定影响的原因?为什么 P 不能充分解释 M 引发的其他效应呢?如果因果关系被理解为法理上(基于规则)的充分性,那么 P,作为 M 的涌现基础,同样是法理充分的。而M作为 P* 的原因,对于P*也是法理上充分的。于是出现了P对于P*也是法理有效的,并因此能成为 P* 的理由。如果 M 以某种方式作为原因被保留下来,我们就会面临一个非常难以置信的结果,那就是每一个向下的因果关系都牵涉到过度决定(因为 P 也是 P * 的原因)。此外,这在任何情况下都与涌现主义的精神背道而驰: 涌现主义者应该做出独特而新颖的因果贡献。.<ref>{{cite journal | last1 = Kim | first1 = Jaegwon | year = 2016 | title = Emergence: Core ideas and issues | url = | journal = Synthese | volume = 151 | issue = 3| pages = 547–59 | doi = 10.1007/s11229-006-9025-0 }}</ref> </blockquote>
  −
  −
  −
  −
  −
If M is the cause of M∗, then M∗ is overdetermined because M∗ can also be thought of as being determined by P. One escape-route that a strong emergentist could take would be to deny [[downward causation]]. However, this would remove the proposed reason that emergent mental states must supervene on physical states, which in turn would call [[physicalism]] into question, and thus be unpalatable for some philosophers and physicists.
  −
  −
If M is the cause of M∗, then M∗ is overdetermined because M∗ can also be thought of as being determined by P. One escape-route that a strong emergentist could take would be to deny downward causation. However, this would remove the proposed reason that emergent mental states must supervene on physical states, which in turn would call physicalism into question, and thus be unpalatable for some philosophers and physicists.
      
如果 M 是 M * 的原因,那么 M * 就被过分决定了,因为 M * 也可以被认为是由 P 决定的。 一个强涌现论者可能采取的逃避途径是否认向下的因果关系。然而,这将消除涌现的精神状态必须附加在物理状态上的理由,这反过来会使唯物主义受到质疑,因此对于一些哲学家和物理学家来说是难以接受的。
 
如果 M 是 M * 的原因,那么 M * 就被过分决定了,因为 M * 也可以被认为是由 P 决定的。 一个强涌现论者可能采取的逃避途径是否认向下的因果关系。然而,这将消除涌现的精神状态必须附加在物理状态上的理由,这反过来会使唯物主义受到质疑,因此对于一些哲学家和物理学家来说是难以接受的。
  −
  −
Meanwhile, others have worked towards developing analytical evidence of strong emergence. In 2009, Gu ''et al.'' presented a class of physical systems that exhibits non-computable macroscopic properties.<ref name="morereally">{{cite journal | last1 = Gu | first1 = Mile | display-authors = etal  | year = 2009 | title = More really is different | url =| journal = Physica D: Nonlinear Phenomena | volume = 238 | issue = 9| pages = 835–39 | doi=10.1016/j.physd.2008.12.016| arxiv = 0809.0151 | bibcode = 2009PhyD..238..835G }}</ref><ref name="binder">{{cite journal | last1 = Binder | first1 = P-M | year = 2009 | title = Computation: The edge of reductionism | url = | journal = Nature | volume = 459 | issue = 7245| pages = 332–34 | doi=10.1038/459332a| pmid = 19458701 | bibcode = 2009Natur.459..332B}}</ref> More precisely, if one could compute certain macroscopic properties of these systems from the microscopic description of these systems, then one would be able to solve computational problems known to be undecidable in computer science. Gu ''et al.'' concluded that
  −
  −
Meanwhile, others have worked towards developing analytical evidence of strong emergence. In 2009, Gu et al. presented a class of physical systems that exhibits non-computable macroscopic properties. More precisely, if one could compute certain macroscopic properties of these systems from the microscopic description of these systems, then one would be able to solve computational problems known to be undecidable in computer science. Gu et al. concluded that
      
与此同时,其他人则致力于发掘强涌现的分析学证据。2009年,Gu等人提出了一类具有不可计算的宏观属性的物理系统。<ref name="morereally">{{cite journal | last1 = Gu | first1 = Mile | display-authors = etal  | year = 2009 | title = More really is different | url =| journal = Physica D: Nonlinear Phenomena | volume = 238 | issue = 9| pages = 835–39 | doi=10.1016/j.physd.2008.12.016| arxiv = 0809.0151 | bibcode = 2009PhyD..238..835G }}</ref><ref name="binder">{{cite journal | last1 = Binder | first1 = P-M | year = 2009 | title = Computation: The edge of reductionism | url = | journal = Nature | volume = 459 | issue = 7245| pages = 332–34 | doi=10.1038/459332a| pmid = 19458701 | bibcode = 2009Natur.459..332B}}</ref>更准确地说,如果一个人能够从这些系统的微观描述计算出这些系统的某些宏观性质,那么他就能够解决计算机科学中已知的一些无法判定的计算问题。Gu等人得出结论
 
与此同时,其他人则致力于发掘强涌现的分析学证据。2009年,Gu等人提出了一类具有不可计算的宏观属性的物理系统。<ref name="morereally">{{cite journal | last1 = Gu | first1 = Mile | display-authors = etal  | year = 2009 | title = More really is different | url =| journal = Physica D: Nonlinear Phenomena | volume = 238 | issue = 9| pages = 835–39 | doi=10.1016/j.physd.2008.12.016| arxiv = 0809.0151 | bibcode = 2009PhyD..238..835G }}</ref><ref name="binder">{{cite journal | last1 = Binder | first1 = P-M | year = 2009 | title = Computation: The edge of reductionism | url = | journal = Nature | volume = 459 | issue = 7245| pages = 332–34 | doi=10.1038/459332a| pmid = 19458701 | bibcode = 2009Natur.459..332B}}</ref>更准确地说,如果一个人能够从这些系统的微观描述计算出这些系统的某些宏观性质,那么他就能够解决计算机科学中已知的一些无法判定的计算问题。Gu等人得出结论
第216行: 第123行:  
   --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])探究一下是Gu  是谷还是顾。
 
   --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])探究一下是Gu  是谷还是顾。
 
   --[[用户:Qige96|Ricky]] 从Google的知识卡片上是“顾”。但这位 Mile Gu 只是华裔,在新西兰和澳大利亚读完大学,现在在新加坡南洋理工当教授。我没有搜到人家的中文名。应该是有的,但没有公开,也许人家也不愿意公开。
 
   --[[用户:Qige96|Ricky]] 从Google的知识卡片上是“顾”。但这位 Mile Gu 只是华裔,在新西兰和澳大利亚读完大学,现在在新加坡南洋理工当教授。我没有搜到人家的中文名。应该是有的,但没有公开,也许人家也不愿意公开。
  −
  −
  −
  −
<blockquote>Although macroscopic concepts are essential for understanding our world, much of fundamental physics has been devoted to the search for a 'theory of everything', a set of equations that perfectly describe the behavior of all fundamental particles. The view that this is the goal of science rests in part on the rationale that such a theory would allow us to derive the behavior of all macroscopic concepts, at least in principle. The evidence we have presented suggests that this view may be overly optimistic. A 'theory of everything' is one of many components necessary for complete understanding of the universe, but is not necessarily the only one. The development of macroscopic laws from first principles may involve more than just systematic logic, and could require conjectures suggested by experiments, simulations or insight.<ref name="morereally" /></blockquote>
  −
  −
<blockquote>Although macroscopic concepts are essential for understanding our world, much of fundamental physics has been devoted to the search for a 'theory of everything', a set of equations that perfectly describe the behavior of all fundamental particles. The view that this is the goal of science rests in part on the rationale that such a theory would allow us to derive the behavior of all macroscopic concepts, at least in principle. The evidence we have presented suggests that this view may be overly optimistic. A 'theory of everything' is one of many components necessary for complete understanding of the universe, but is not necessarily the only one. The development of macroscopic laws from first principles may involve more than just systematic logic, and could require conjectures suggested by experiments, simulations or insight.
      
尽管宏观概念对于理解我们的世界来说是必不可少的,大部分的基础物理学致力于寻找一个“万物理论”,一个完美描述所有基本粒子行为的方程组。有观点认为,这就是科学的目标,因为“万物理论”可以让我们推导出所有宏观事物的行为,至少在原则上是这样的。但我们的证据表明,这种观点可能过于乐观。“万有理论”是完全理解宇宙所必需的许多要素之一,但不一定是唯一的要素。从第一原理出发推导宏观定律可能不仅仅涉及系统的逻辑,而且可能需要实验、模拟或洞察力的推测。 <ref name="morereally" />
 
尽管宏观概念对于理解我们的世界来说是必不可少的,大部分的基础物理学致力于寻找一个“万物理论”,一个完美描述所有基本粒子行为的方程组。有观点认为,这就是科学的目标,因为“万物理论”可以让我们推导出所有宏观事物的行为,至少在原则上是这样的。但我们的证据表明,这种观点可能过于乐观。“万有理论”是完全理解宇宙所必需的许多要素之一,但不一定是唯一的要素。从第一原理出发推导宏观定律可能不仅仅涉及系统的逻辑,而且可能需要实验、模拟或洞察力的推测。 <ref name="morereally" />
第228行: 第128行:     
===涌现和相互作用===
 
===涌现和相互作用===
  −
  −
  −
Emergent structures are patterns that emerge via the collective actions of many individual entities. To explain such patterns, one might conclude, per [[Aristotle]],<ref name="Meta" /> that emergent structures are other than the sum of their parts on the assumption that the emergent order will not arise if the various parts simply interact independently of one another. However, there are those who [[A New Kind of Science#Simple programs|disagree]].<ref>{{cite web|url= http://www.physlink.com/Education/essay_weinberg.cfm|title= A Designer Universe?|author= Steven Weinberg|accessdate= 2008-07-14|quote= A version of the original quote from address at the Conference on Cosmic Design, American Association for the Advancement of Science, Washington, D.C. in April 1999|url-status= live|archiveurl= https://web.archive.org/web/20100519145647/http://www.physlink.com/education/essay_weinberg.cfm|archivedate= 2010-05-19}}</ref> According to this argument, the interaction of each part with its immediate surroundings causes a complex chain of processes that can lead to order in some form. In fact, some systems in nature are observed to exhibit emergence based upon the interactions of autonomous parts, and some others exhibit emergence that at least at present cannot be reduced in this way. In particular [[Renormalization group|renormalization]] methods in theoretical physics enable scientists to study systems that are not tractable as the combination of their parts.<ref>{{Cite journal|last= Longo|first= Giuseppe|last2= Montévil|first2= Maël|last3= Pocheville|first3= Arnaud|date= 2012-01-01|title= From bottom-up approaches to levels of organization and extended critical transitions|journal= Frontiers in Physiology|volume= 3|page= 232|doi= 10.3389/fphys.2012.00232|pmc= 3429021|pmid= 22934001}}</ref>
  −
  −
Emergent structures are patterns that emerge via the collective actions of many individual entities. To explain such patterns, one might conclude, per Aristotle, According to this argument, the interaction of each part with its immediate surroundings causes a complex chain of processes that can lead to order in some form. In fact, some systems in nature are observed to exhibit emergence based upon the interactions of autonomous parts, and some others exhibit emergence that at least at present cannot be reduced in this way. In particular renormalization methods in theoretical physics enable scientists to study systems that are not tractable as the combination of their parts.
  −
   
涌现结构是通过许多单个实体的集体行动而出现的模式。为了解释这种模式,人们提出了一些假说。按照亚里士多德的说法<ref name="Meta" />,每个部分与其周围环境的相互作用导致了一系列复杂的过程,这些过程可以导致某种形式的秩序。事实上,我们观察到自然界中的一些系统是基于其部分的相互作用而呈现出涌现的,而另一些系统则呈现出了,至少目前不能以进行简化的涌现现象<ref>{{cite web|url= http://www.physlink.com/Education/essay_weinberg.cfm|title= A Designer Universe?|author= Steven Weinberg|accessdate= 2008-07-14|quote= A version of the original quote from address at the Conference on Cosmic Design, American Association for the Advancement of Science, Washington, D.C. in April 1999|url-status= live|archiveurl= https://web.archive.org/web/20100519145647/http://www.physlink.com/education/essay_weinberg.cfm|archivedate= 2010-05-19}}</ref>。特别是理论物理学中的重整化方法使得科学家们能够研究那些不能作为各部分组合来处理的系统。<ref>{{Cite journal|last= Longo|first= Giuseppe|last2= Montévil|first2= Maël|last3= Pocheville|first3= Arnaud|date= 2012-01-01|title= From bottom-up approaches to levels of organization and extended critical transitions|journal= Frontiers in Physiology|volume= 3|page= 232|doi= 10.3389/fphys.2012.00232|pmc= 3429021|pmid= 22934001}}</ref>
 
涌现结构是通过许多单个实体的集体行动而出现的模式。为了解释这种模式,人们提出了一些假说。按照亚里士多德的说法<ref name="Meta" />,每个部分与其周围环境的相互作用导致了一系列复杂的过程,这些过程可以导致某种形式的秩序。事实上,我们观察到自然界中的一些系统是基于其部分的相互作用而呈现出涌现的,而另一些系统则呈现出了,至少目前不能以进行简化的涌现现象<ref>{{cite web|url= http://www.physlink.com/Education/essay_weinberg.cfm|title= A Designer Universe?|author= Steven Weinberg|accessdate= 2008-07-14|quote= A version of the original quote from address at the Conference on Cosmic Design, American Association for the Advancement of Science, Washington, D.C. in April 1999|url-status= live|archiveurl= https://web.archive.org/web/20100519145647/http://www.physlink.com/education/essay_weinberg.cfm|archivedate= 2010-05-19}}</ref>。特别是理论物理学中的重整化方法使得科学家们能够研究那些不能作为各部分组合来处理的系统。<ref>{{Cite journal|last= Longo|first= Giuseppe|last2= Montévil|first2= Maël|last3= Pocheville|first3= Arnaud|date= 2012-01-01|title= From bottom-up approaches to levels of organization and extended critical transitions|journal= Frontiers in Physiology|volume= 3|page= 232|doi= 10.3389/fphys.2012.00232|pmc= 3429021|pmid= 22934001}}</ref>
    
===客观或主观的品质===
 
===客观或主观的品质===
  −
Crutchfield regards the properties of complexity and organization of any system as [[Subjectivity|subjective]] [[Quality (philosophy)|qualities]] determined by the observer.
  −
  −
Crutchfield regards the properties of complexity and organization of any system as subjective qualities determined by the observer.
  −
   
克拉奇菲尔德认为任何系统的复杂性和组织性都是由观察者主观所决定的。
 
克拉奇菲尔德认为任何系统的复杂性和组织性都是由观察者主观所决定的。
      −
<blockquote>Defining structure and detecting the emergence of complexity in nature are inherently subjective, though essential, scientific activities. Despite the difficulties, these problems can be analysed in terms of how model-building observers infer from measurements the computational capabilities embedded in non-linear processes. An observer’s notion of what is ordered, what is random, and what is complex in its environment depends directly on its computational resources: the amount of raw measurement data, of memory, and of time available for estimation and inference. The discovery of structure in an environment depends more critically and subtly, though, on how those resources are organized. The descriptive power of the observer’s chosen (or implicit) computational model class, for example, can be an overwhelming determinant in finding regularity in data.
+
<blockquote>尽管是必要的科学活动,定义结构和探测自然界复杂性的涌现本质上是主观的。尽管存在这些困难,这些问题可以从建模观察者如何从测量中推断出在非线性过程中蕴含的计算的角度进行分析。观察者对于什么是有序的,什么是随机的,什么是复杂的环境的概念直接取决于它的计算资源: 原始测量数据的数量,存储空间,以及可用于计算的时间。更关键和微妙的一点是,环境中结构的发现取决于这些计算资源是如何被使用的。例如,观察者选择的(或隐含的)计算模型的描述能力,是能否在数据中找到规律性的一个极端重要的决定因素。 <ref>
 
  −
Defining structure and detecting the emergence of complexity in nature are inherently subjective, though essential, scientific activities. Despite the difficulties, these problems can be analysed in terms of how model-building observers infer from measurements the computational capabilities embedded in non-linear processes. An observer’s notion of what is ordered, what is random, and what is complex in its environment depends directly on its computational resources: the amount of raw measurement data, of memory, and of time available for estimation and inference. The discovery of structure in an environment depends more critically and subtly, though, on how those resources are organized. The descriptive power of the observer’s chosen (or implicit) computational model class, for example, can be an overwhelming determinant in finding regularity in data.
  −
 
  −
尽管是必要的科学活动,定义结构和探测自然界复杂性的涌现本质上是主观的。尽管存在这些困难,这些问题可以从建模观察者如何从测量中推断出在非线性过程中蕴含的计算的角度进行分析。观察者对于什么是有序的,什么是随机的,什么是复杂的环境的概念直接取决于它的计算资源: 原始测量数据的数量,存储空间,以及可用于计算的时间。更关键和微妙的一点是,环境中结构的发现取决于这些计算资源是如何被使用的。例如,观察者选择的(或隐含的)计算模型的描述能力,是能否在数据中找到规律性的一个极端重要的决定因素。 <ref>
   
{{cite journal
 
{{cite journal
 
| last1                = Crutchfield
 
| last1                = Crutchfield
第271行: 第155行:  
</ref>
 
</ref>
 
</blockquote>
 
</blockquote>
  −
  −
On the other hand, [[Peter Corning]] argues: "Must the synergies be perceived/observed in order to qualify as emergent effects, as some theorists claim? Most emphatically not. The synergies associated with emergence are real and measurable, even if nobody is there to observe them."{{Harv|Corning|2002}}
  −
  −
On the other hand, Peter Corning argues: "Must the synergies be perceived/observed in order to qualify as emergent effects, as some theorists claim? Most emphatically not. The synergies associated with emergence are real and measurable, even if nobody is there to observe them."
      
另一方面,彼得·康宁认为: “难道协同作用必须被感知/观察,才能像某些理论家所说的那样,被称为涌现效应吗?很明显不是。与涌现相关的协同效应是真实的、可衡量的,即使没有人在那里观察它们。”
 
另一方面,彼得·康宁认为: “难道协同作用必须被感知/观察,才能像某些理论家所说的那样,被称为涌现效应吗?很明显不是。与涌现相关的协同效应是真实的、可衡量的,即使没有人在那里观察它们。”
  −
  −
The low [[entropy]] of an ordered system can be viewed as an example of subjective emergence: the observer sees an ordered system by ignoring the underlying microstructure (i.e. movement of molecules or elementary particles) and concludes that the system has a low entropy.
  −
  −
The low entropy of an ordered system can be viewed as an example of subjective emergence: the observer sees an ordered system by ignoring the underlying microstructure (i.e. movement of molecules or elementary particles) and concludes that the system has a low entropy.
      
有序系统的低熵值可以看作是主观涌现的一个例子: 观察者通过忽略基本的微观结构(例如分子或基本粒子的运动),并得出结论,该系统有低的熵值<ref>See f.i. Carlo Rovelli: The mystery of time, 2017, part 10: Perspective, p.105-110</ref>
 
有序系统的低熵值可以看作是主观涌现的一个例子: 观察者通过忽略基本的微观结构(例如分子或基本粒子的运动),并得出结论,该系统有低的熵值<ref>See f.i. Carlo Rovelli: The mystery of time, 2017, part 10: Perspective, p.105-110</ref>
  −
  −
  −
On the other hand, chaotic, unpredictable behaviour can also be seen as subjective emergent, while at a microscopic scale the movement of the constituent parts can be fully deterministic.
  −
  −
On the other hand, chaotic, unpredictable behaviour can also be seen as subjective emergent, while at a microscopic scale the movement of the constituent parts can be fully deterministic.
      
另一方面,混乱、不可预知的行为也可以被视为主观涌现,而在微观尺度上,组成部分的运动可以是完全确定的。
 
另一方面,混乱、不可预知的行为也可以被视为主观涌现,而在微观尺度上,组成部分的运动可以是完全确定的。
    
==在宗教、艺术和人文学科==
 
==在宗教、艺术和人文学科==
  −
  −
In religion, emergence grounds expressions of [[religious naturalism]] and [[syntheism]] in which a sense of the [[sacred]] is perceived in the workings of entirely naturalistic processes by which more [[Complexity|complex]] forms arise or evolve from simpler forms. Examples are detailed in ''The Sacred Emergence of Nature'' by [[Ursula Goodenough]] & [[Terrence Deacon]] and [http://www.edge.org/3rd_culture/kauffman06/kauffman06_index.html ''Beyond Reductionism: Reinventing the Sacred''] by [[Stuart Kauffman]], both from 2006, and in ''Syntheism – Creating God in The Internet Age'' by [[Alexander Bard]] & [[Jan Söderqvist]] from 2014. An early argument (1904–05) for the emergence of social formations, in part stemming from religion, can be found in [[Max Weber]]'s most famous work, ''[[The Protestant Ethic and the Spirit of Capitalism]]''.<ref>McKinnon, AM. (2010). 'Elective affinities of the Protestant ethic: Weber and the chemistry of capitalism'. Sociological Theory, vol 28, no. 1, pp. 108–26.{{cite web |url=http://aura.abdn.ac.uk/bitstream/2164/3035/1/McKinnon_Elective_Affinities_final_non_format.pdf |title=Archived copy |accessdate=2014-10-26 |url-status=live |archiveurl=https://web.archive.org/web/20140818023547/http://aura.abdn.ac.uk/bitstream/2164/3035/1/McKinnon_Elective_Affinities_final_non_format.pdf |archivedate=2014-08-18 }}</ref> Recently, the emergence of a new social system is linked with the emergence of order from nonlinear relationships among multiple interacting units, where multiple interacting units are individual thoughts, consciousness, and actions.<ref>{{Cite book|title=Complexification: Explaining a paradoxical world through the science of surprise|last=Casti, J. L.|publisher=Harper Collins|year=1994|isbn=|location=New York|pages=}}</ref>
  −
  −
In religion, emergence grounds expressions of religious naturalism and syntheism in which a sense of the sacred is perceived in the workings of entirely naturalistic processes by which more complex forms arise or evolve from simpler forms. Examples are detailed in The Sacred Emergence of Nature by Ursula Goodenough & Terrence Deacon and [http://www.edge.org/3rd_culture/kauffman06/kauffman06_index.html Beyond Reductionism: Reinventing the Sacred] by Stuart Kauffman, both from 2006, and in Syntheism – Creating God in The Internet Age by Alexander Bard & Jan Söderqvist from 2014. An early argument (1904–05) for the emergence of social formations, in part stemming from religion, can be found in Max Weber's most famous work, The Protestant Ethic and the Spirit of Capitalism. Recently, the emergence of a new social system is linked with the emergence of order from nonlinear relationships among multiple interacting units, where multiple interacting units are individual thoughts, consciousness, and actions.
  −
   
在宗教中,涌现是宗教自然主义和综合主义的表现形式,给人一种神圣的感觉,通常认为在完全自然主义的过程中,复杂形式是从更简单形式中产生或演化出来的。例如,2006年出版的 Ursula Goodenough 和 Terrence Deacon的《[https://openscholarship.wustl.edu/bio_facpubs/67/ 自然的神圣涌现]》和 Stuart Kauffman的《[http://www.edge.org/3rd_culture/kauffman06/kauffman06_index.html 超越还原论的:重塑神圣]》,以及2014年出版的Alexander Bard和Jan Söderqvist的《综合主义: 在互联网时代创造上帝》,这个也被拍成电影:Futurica Trilogy 未来三部曲。关于社会形态出现的早期论证(1904-05),部分源于宗教,可以在 Max Weber最著名的作品《新教伦理与资本主义精神》.<ref>McKinnon, AM. (2010). 'Elective affinities of the Protestant ethic: Weber and the chemistry of capitalism'. Sociological Theory, vol 28, no. 1, pp. 108–26.{{cite web |url=http://aura.abdn.ac.uk/bitstream/2164/3035/1/McKinnon_Elective_Affinities_final_non_format.pdf |title=Archived copy |accessdate=2014-10-26 |url-status=live |archiveurl=https://web.archive.org/web/20140818023547/http://aura.abdn.ac.uk/bitstream/2164/3035/1/McKinnon_Elective_Affinities_final_non_format.pdf |archivedate=2014-08-18 }}</ref> 找到。到近代以来,一个新的社会系统的涌现与多个相互作用的部分之间的非线性关系所导致的秩序的涌现是联系在一起的,其中多个相互作用的单元可以是个人的思想、意识和行动。<ref>{{Cite book|title=Complexification: Explaining a paradoxical world through the science of surprise|last=Casti, J. L.|publisher=Harper Collins|year=1994|isbn=|location=New York|pages=}}</ref>
 
在宗教中,涌现是宗教自然主义和综合主义的表现形式,给人一种神圣的感觉,通常认为在完全自然主义的过程中,复杂形式是从更简单形式中产生或演化出来的。例如,2006年出版的 Ursula Goodenough 和 Terrence Deacon的《[https://openscholarship.wustl.edu/bio_facpubs/67/ 自然的神圣涌现]》和 Stuart Kauffman的《[http://www.edge.org/3rd_culture/kauffman06/kauffman06_index.html 超越还原论的:重塑神圣]》,以及2014年出版的Alexander Bard和Jan Söderqvist的《综合主义: 在互联网时代创造上帝》,这个也被拍成电影:Futurica Trilogy 未来三部曲。关于社会形态出现的早期论证(1904-05),部分源于宗教,可以在 Max Weber最著名的作品《新教伦理与资本主义精神》.<ref>McKinnon, AM. (2010). 'Elective affinities of the Protestant ethic: Weber and the chemistry of capitalism'. Sociological Theory, vol 28, no. 1, pp. 108–26.{{cite web |url=http://aura.abdn.ac.uk/bitstream/2164/3035/1/McKinnon_Elective_Affinities_final_non_format.pdf |title=Archived copy |accessdate=2014-10-26 |url-status=live |archiveurl=https://web.archive.org/web/20140818023547/http://aura.abdn.ac.uk/bitstream/2164/3035/1/McKinnon_Elective_Affinities_final_non_format.pdf |archivedate=2014-08-18 }}</ref> 找到。到近代以来,一个新的社会系统的涌现与多个相互作用的部分之间的非线性关系所导致的秩序的涌现是联系在一起的,其中多个相互作用的单元可以是个人的思想、意识和行动。<ref>{{Cite book|title=Complexification: Explaining a paradoxical world through the science of surprise|last=Casti, J. L.|publisher=Harper Collins|year=1994|isbn=|location=New York|pages=}}</ref>
   −
 
+
在艺术中,涌现被用来探索创新、创造和作品创作。一些艺术/文学理论家(Wheeler,2006;<ref>{{cite book|last=Wheeler|first=Wendy|title=The Whole Creature: Complexity, Biosemiotics and the Evolution of Culture|year=2006|publisher=Lawrence & Wishart|location=London|isbn=978-1-905007-30-1|page=192}}</ref> Alexande,2011<ref>{{cite book|last=Alexander|first=Victoria N.|title=The Biologist's Mistress: Rethinking Self-Organization in Art, Literature, and Nature|year=2011|publisher=Emergent Publications|location=Litchfield Park, AZ|isbn=978-0-9842165-5-0|url=http://emergentpublications.com/catalog_detail.aspx?Value=82|url-status=live|archiveurl=https://web.archive.org/web/20141208050459/http://emergentpublications.com/catalog_detail.aspx?Value=82|archivedate=2014-12-08}}</ref>)利用复杂性科学和涌现理论提出了替代后现代理解的“作品创作”。他们认为艺术的自我和意义是涌现出来的、相对客观的现象。Michael J. Pearce用涌现现象来描述与当代神经科学相关艺术作品的经验。<ref>{{cite book|last=Pearce|first=Michael J.|title=Art in the Age of Emergence|year=2015|publisher=Cambridge Scholars Publishing|location=Manchester, England|isbn=978-1443870573|url=http://www.cambridgescholars.com/art-in-the-age-of-emergence|url-status=live|archiveurl=https://web.archive.org/web/20150522021953/http://www.cambridgescholars.com/art-in-the-age-of-emergence|archivedate=2015-05-22}}</ref>实践艺术家Leonel Moura则认为他的“机器人艺术”具有真正的、基于涌现原理的创造力,尽管这种创造力还很初级<ref>{{cite journal |author=Leonel Moura|date=16 July 2018|title=Robot Art: An Interview with Leonel Moura|journal=Arts|volume=7|issue=3|pages=28|doi=10.3390/arts7030028|doi-access=free}}</ref>。在文学和语言学中,涌现的概念被应用于文体学领域,以解释文本的句法结构和作者风格之间的相互关系(Slautina,Marusenko,2014)<ref>Slautina, Maria & Marusenko, Mikhail (2014), [https://www.academia.edu/9466688/Lémergence_du_style._Les_méthodes_stylométriques_pour_la_recherche_de_paternité_des_textes_médiévaux "L'émergence du style. Les méthodes stylométriques pour la recherche de paternité des textes médiévaux"] (in French), in ''Les Cahiers du Numérique'' , vol. 10, pp. 179-215.</ref>
 
  −
In art, emergence is used to explore the origins of novelty, creativity, and authorship. Some art/literary theorists (Wheeler, 2006;<ref>{{cite book|last=Wheeler|first=Wendy|title=The Whole Creature: Complexity, Biosemiotics and the Evolution of Culture|year=2006|publisher=Lawrence & Wishart|location=London|isbn=978-1-905007-30-1|page=192}}</ref> Alexander, 2011<ref>{{cite book|last=Alexander|first=Victoria N.|title=The Biologist's Mistress: Rethinking Self-Organization in Art, Literature, and Nature|year=2011|publisher=Emergent Publications|location=Litchfield Park, AZ|isbn=978-0-9842165-5-0|url=http://emergentpublications.com/catalog_detail.aspx?Value=82|url-status=live|archiveurl=https://web.archive.org/web/20141208050459/http://emergentpublications.com/catalog_detail.aspx?Value=82|archivedate=2014-12-08}}</ref>) have proposed alternatives to postmodern understandings of "authorship" using the complexity sciences and emergence theory. They contend that artistic selfhood and meaning are emergent, relatively objective phenomena. [[Michael Pearce (artist)|Michael J. Pearce]] has used emergence to describe the experience of works of art in relation to contemporary neuroscience.<ref>{{cite book|last=Pearce|first=Michael J.|title=Art in the Age of Emergence|year=2015|publisher=Cambridge Scholars Publishing|location=Manchester, England|isbn=978-1443870573|url=http://www.cambridgescholars.com/art-in-the-age-of-emergence|url-status=live|archiveurl=https://web.archive.org/web/20150522021953/http://www.cambridgescholars.com/art-in-the-age-of-emergence|archivedate=2015-05-22}}</ref> Practicing artist [[Leonel Moura]], in turn, attributes to his "artbots" a real, if nonetheless rudimentary, creativity based on emergent principles.<ref>{{cite journal |author=Leonel Moura|date=16 July 2018|title=Robot Art: An Interview with Leonel Moura|journal=Arts|volume=7|issue=3|pages=28|doi=10.3390/arts7030028|doi-access=free}}</ref> In literature and linguistics, the concept of emergence has been applied in the domain of stylometry to explain the interrelation between the syntactical structures of the text and the author style (Slautina, Marusenko, 2014).<ref>Slautina, Maria & Marusenko, Mikhail (2014), [https://www.academia.edu/9466688/Lémergence_du_style._Les_méthodes_stylométriques_pour_la_recherche_de_paternité_des_textes_médiévaux "L'émergence du style. Les méthodes stylométriques pour la recherche de paternité des textes médiévaux"] (in French), in ''Les Cahiers du Numérique'' , vol. 10, pp. 179-215.</ref>
  −
 
  −
In art, emergence is used to explore the origins of novelty, creativity, and authorship. Some art/literary theorists (Wheeler, 2006;  Alexander, 2011) have proposed alternatives to postmodern understandings of "authorship" using the complexity sciences and emergence theory. They contend that artistic selfhood and meaning are emergent, relatively objective phenomena. Michael J. Pearce has used emergence to describe the experience of works of art in relation to contemporary neuroscience. Practicing artist Leonel Moura, in turn, attributes to his "artbots" a real, if nonetheless rudimentary, creativity based on emergent principles. In literature and linguistics, the concept of emergence has been applied in the domain of stylometry to explain the interrelation between the syntactical structures of the text and the author style (Slautina, Marusenko, 2014).
  −
 
  −
在艺术中,涌现被用来探索创新、创造和作品创作。一些艺术/文学理论家(Wheeler,2006; Alexande,2011)利用复杂性科学和涌现理论提出了替代后现代理解的“作品创作”。他们认为艺术的自我和意义是涌现出来的、相对客观的现象。Michael J. Pearce用涌现现象来描述与当代神经科学相关艺术作品的经验。实践艺术家Leonel Moura则认为他的“机器人艺术”具有真正的、基于涌现原理的创造力,尽管这种创造力还很初级。在文学和语言学中,涌现的概念被应用于文体学领域,以解释文本的句法结构和作者风格之间的相互关系(Slautina,Marusenko,2014)。
      
   -- [[用户:Qige96|Ricky]]: Some art/literary theorists have proposed alternatives to postmodern understandings of "authorship" using the complexity sciences and emergence theory. 这里我把“authorship”翻译成“作品创作”
 
   -- [[用户:Qige96|Ricky]]: Some art/literary theorists have proposed alternatives to postmodern understandings of "authorship" using the complexity sciences and emergence theory. 这里我把“authorship”翻译成“作品创作”
  −
  −
In international development, concepts of emergence have been used within a theory of social change termed [[SEED-SCALE]] to show how standard principles interact to bring forward socio-economic development fitted to cultural values, community economics, and natural environment (local solutions emerging from the larger socio-econo-biosphere). These principles can be implemented utilizing a sequence of standardized tasks that [[self-assemble]] in individually specific ways utilizing recursive evaluative criteria.<ref>Daniel C. Taylor, Carl E. Taylor, Jesse O. Taylor, ''Empowerment on an Unstable Planet: From Seeds of Human Energy to a Scale of Global Change'' (New York: Oxford University Press, 2012)</ref>
  −
  −
In international development, concepts of emergence have been used within a theory of social change termed SEED-SCALE to show how standard principles interact to bring forward socio-economic development fitted to cultural values, community economics, and natural environment (local solutions emerging from the larger socio-econo-biosphere). These principles can be implemented utilizing a sequence of standardized tasks that self-assemble in individually specific ways utilizing recursive evaluative criteria.
      
在国际发展中,涌现的概念被用于一种称为 SEED-SCALE 的社会变革理论中,以显示基本的原则是如何相互作用,从而推动符合文化价值观、社区经济和自然环境的社会经济发展。这些原则可以利用一系列标准化的任务来实现,利用递归的执行方式以各自特定的方式进行自组装。<ref>Daniel C. Taylor, Carl E. Taylor, Jesse O. Taylor, ''Empowerment on an Unstable Planet: From Seeds of Human Energy to a Scale of Global Change'' (New York: Oxford University Press, 2012)</ref>
 
在国际发展中,涌现的概念被用于一种称为 SEED-SCALE 的社会变革理论中,以显示基本的原则是如何相互作用,从而推动符合文化价值观、社区经济和自然环境的社会经济发展。这些原则可以利用一系列标准化的任务来实现,利用递归的执行方式以各自特定的方式进行自组装。<ref>Daniel C. Taylor, Carl E. Taylor, Jesse O. Taylor, ''Empowerment on an Unstable Planet: From Seeds of Human Energy to a Scale of Global Change'' (New York: Oxford University Press, 2012)</ref>
  −
  −
In postcolonial studies, the term "Emerging Literature" refers to a contemporary body of texts that is gaining momentum in the global literary landscape (v. esp.: J.M. Grassin, ed. ''Emerging Literatures'', Bern, Berlin, etc. : Peter Lang, 1996). By opposition, "emergent literature" is rather a concept used in the theory of literature.
  −
  −
In postcolonial studies, the term "Emerging Literature" refers to a contemporary body of texts that is gaining momentum in the global literary landscape (v. esp.: J.M. Grassin, ed. Emerging Literatures, Bern, Berlin, etc. : Peter Lang, 1996). By opposition, "emergent literature" is rather a concept used in the theory of literature.
      
在20世纪90年代后殖民主义理论,“Emerging Literature”通常翻译为“新兴文学”,指的是在全球文学景观中获得势头的当代文本主体。(v. esp.: J.M. Grassin, ed. Emerging Literatures, Bern, Berlin, etc. : Peter Lang, 1996)。而“emergent literature”通常翻译为“涌现文学”,是文学理论中使用的一个概念。
 
在20世纪90年代后殖民主义理论,“Emerging Literature”通常翻译为“新兴文学”,指的是在全球文学景观中获得势头的当代文本主体。(v. esp.: J.M. Grassin, ed. Emerging Literatures, Bern, Berlin, etc. : Peter Lang, 1996)。而“emergent literature”通常翻译为“涌现文学”,是文学理论中使用的一个概念。
    
==涌现的特性和过程 ==
 
==涌现的特性和过程 ==
 
+
当一些简单的个体([[基于主体的模型_Agent-based_model|主体]])在一个环境中运动时,可能会出现涌现的行为或涌现特性,形成整体层面更复杂的行为。如果涌现发生在不同的尺度上,那么原因通常是不同尺度之间的因果关系。换句话说,涌现特性通常意味着在系统中存在一种自上而下的反馈形式。出现涌现特性的过程可能发生在观察系统之后或观察时,并且通常可以通过变化累积所形成的模式来识别,这个过程一般称为“增长”。涌现行为之所以会出现,是因为不同尺度之间存在复杂的因果关系和反馈,这种关系被称为'''互联性 Interconnectivity'''。涌现特性本身既不是完全可预测的,也不是完全不可预测和前所未有的,而是代表系统进化的新层次。复杂的行为或者特性不是任何一类实体的特性,也不能轻易地从较低级别个体行为中预测或推断出来,事实上复杂行为不能简化为个体层面的行为。<ref>{{cite web |title=Flying in V-formation gives best view for least effort |url=https://www.newscientist.com/article/dn11679-flying-in-v-formation-gives-best-view-for-least-effort/ |website=New Scientist |date=21 April 2007}}</ref>鸟群或鱼群的集体行为展现出的整体形状就可以看成是涌现特性的很好例子。
 
  −
 
  −
 
  −
An emergent behavior or emergent property can appear when a number of simple [[wikt:entity|entities]] (agents) operate in an environment, forming more complex behaviors as a collective. If emergence happens over disparate size scales, then the reason is usually a causal relation across different scales. In other words, there is often a form of top-down feedback in systems with emergent properties. The processes causing emergent properties may occur in either the observed or observing system, and are commonly identifiable by their patterns of accumulating change, generally called 'growth'. Emergent behaviours can occur because of intricate causal relations across different scales and feedback, known as [[interconnectivity]]. The emergent property itself may be either very predictable or unpredictable and unprecedented, and represent a new level of the system's evolution. The complex behaviour or properties are not a property of any single such entity, nor can they easily be predicted or deduced from behaviour in the lower-level entities, and might in fact be irreducible to such behavior.<ref>{{cite web |title=Flying in V-formation gives best view for least effort |url=https://www.newscientist.com/article/dn11679-flying-in-v-formation-gives-best-view-for-least-effort/ |website=New Scientist |date=21 April 2007}}</ref> The shape and behaviour of a flock of birds or school of fish are good examples of emergent properties.
  −
 
  −
An emergent behavior or emergent property can appear when a number of simple entities (agents) operate in an environment, forming more complex behaviors as a collective. If emergence happens over disparate size scales, then the reason is usually a causal relation across different scales. In other words, there is often a form of top-down feedback in systems with emergent properties. The processes causing emergent properties may occur in either the observed or observing system, and are commonly identifiable by their patterns of accumulating change, generally called 'growth'. Emergent behaviours can occur because of intricate causal relations across different scales and feedback, known as interconnectivity. The emergent property itself may be either very predictable or unpredictable and unprecedented, and represent a new level of the system's evolution. The complex behaviour or properties are not a property of any single such entity, nor can they easily be predicted or deduced from behaviour in the lower-level entities, and might in fact be irreducible to such behavior. The shape and behaviour of a flock of birds or school of fish are good examples of emergent properties.
  −
 
  −
当一些简单的个体([[基于主体的模型_Agent-based_model|主体]])在一个环境中运动时,可能会出现涌现的行为或涌现特性,形成整体层面更复杂的行为。如果涌现发生在不同的尺度上,那么原因通常是不同尺度之间的因果关系。换句话说,涌现特性通常意味着在系统中存在一种自上而下的反馈形式。出现涌现特性的过程可能发生在观察系统之后或观察时,并且通常可以通过变化累积所形成的模式来识别,这个过程一般称为“增长”。涌现行为之所以会出现,是因为不同尺度之间存在复杂的因果关系和反馈,这种关系被称为'''互联性 Interconnectivity'''。涌现特性本身既不是完全可预测的,也不是完全不可预测和前所未有的,而是代表系统进化的新层次。复杂的行为或者特性不是任何一类实体的特性,也不能轻易地从较低级别个体行为中预测或推断出来,事实上复杂行为不能简化为个体层面的行为。鸟群或鱼群的集体行为展现出的整体形状就可以看成是涌现特性的很好例子。
  −
 
  −
 
  −
One reason emergent behaviour is hard to predict is that the number of [[interaction]]s between a system's components increases exponentially with the number of components, thus allowing for many new and subtle types of behaviour to emerge. Emergence is often a product of particular patterns of interaction. [[Negative feedback]] introduces constraints that serve to fix structures or behaviours. In contrast, [[positive feedback]] promotes change, allowing local variations to grow into global patterns. Another way in which interactions leads to emergent properties is [[dual-phase evolution]]. This occurs where interactions are applied intermittently, leading to two phases: one in which patterns form or grow, the other in which they are refined or removed.
  −
 
  −
One reason emergent behaviour is hard to predict is that the number of interactions between a system's components increases exponentially with the number of components, thus allowing for many new and subtle types of behaviour to emerge. Emergence is often a product of particular patterns of interaction. Negative feedback introduces constraints that serve to fix structures or behaviours. In contrast, positive feedback promotes change, allowing local variations to grow into global patterns. Another way in which interactions leads to emergent properties is dual-phase evolution. This occurs where interactions are applied intermittently, leading to two phases: one in which patterns form or grow, the other in which they are refined or removed.
      
涌现行为难以预测的一个原因是,系统个体之间相互作用的数量随个体的数量呈指数增长,从而允许许多新的微妙行为类型涌现出来。涌现通常是特定交互模式的产物。负反馈引入了有助于修复结构或行为的约束。相比之下,正反馈促进改变,允许局部变化发展成为全局模式。相互作用产生涌现特性的另一种方式是[[双相演化]],这发生在相互作用是间歇出现的时候,引发两个阶段: 一个是模式的形成或增长,另一个是他们被提炼或移除。
 
涌现行为难以预测的一个原因是,系统个体之间相互作用的数量随个体的数量呈指数增长,从而允许许多新的微妙行为类型涌现出来。涌现通常是特定交互模式的产物。负反馈引入了有助于修复结构或行为的约束。相比之下,正反馈促进改变,允许局部变化发展成为全局模式。相互作用产生涌现特性的另一种方式是[[双相演化]],这发生在相互作用是间歇出现的时候,引发两个阶段: 一个是模式的形成或增长,另一个是他们被提炼或移除。
  −
  −
On the other hand, merely having a large number of interactions is not enough by itself to guarantee emergent behaviour; many of the interactions may be negligible or irrelevant, or may cancel each other out. In some cases, a large number of interactions can in fact hinder the emergence of interesting behaviour, by creating a lot of "noise" to drown out any emerging "signal"; the emergent behaviour may need to be temporarily isolated from other interactions before it reaches enough critical mass to self-support. Thus it is not just the sheer number of connections between components which encourages emergence; it is also how these connections are organised. A hierarchical organisation is one example that can generate emergent behaviour (a bureaucracy may behave in a way quite different from the individual departments of that bureaucracy); but emergent behaviour can also arise from more decentralized organisational structures, such as a marketplace. In some cases, the system has to reach a combined threshold of diversity, organisation, and connectivity before emergent behaviour appears.
  −
  −
On the other hand, merely having a large number of interactions is not enough by itself to guarantee emergent behaviour; many of the interactions may be negligible or irrelevant, or may cancel each other out. In some cases, a large number of interactions can in fact hinder the emergence of interesting behaviour, by creating a lot of "noise" to drown out any emerging "signal"; the emergent behaviour may need to be temporarily isolated from other interactions before it reaches enough critical mass to self-support. Thus it is not just the sheer number of connections between components which encourages emergence; it is also how these connections are organised. A hierarchical organisation is one example that can generate emergent behaviour (a bureaucracy may behave in a way quite different from the individual departments of that bureaucracy); but emergent behaviour can also arise from more decentralized organisational structures, such as a marketplace. In some cases, the system has to reach a combined threshold of diversity, organisation, and connectivity before emergent behaviour appears.
      
另一方面,个体之间仅仅有大量的相互作用本身并不足以保证出现涌现行为。许多相互作用可能是微不足道或无关紧要的,或者可能相互抵消。在某些情况下,大量的相互作用实际上可能阻碍有趣行为的涌现,因为它们制造了大量的”噪音”来干扰新涌现出现的”信号”。在达到临界点以能维持自身以前,这种涌现行为可能需要暂时与其他相互作用隔离。因此,促进涌现的不仅仅是个体之间连接的绝对数量,还有连接的方式。分层组织就是能够产生涌现行为的例子(政府机构的行为方式可能与政府机构的单个部门大不相同)。 但涌现行为也可能产生于更为分散的组织结构,如市场。在某些情况下,在涌现行为出现之前,系统必须达到多样性、组织性和连通性的组合阈值。
 
另一方面,个体之间仅仅有大量的相互作用本身并不足以保证出现涌现行为。许多相互作用可能是微不足道或无关紧要的,或者可能相互抵消。在某些情况下,大量的相互作用实际上可能阻碍有趣行为的涌现,因为它们制造了大量的”噪音”来干扰新涌现出现的”信号”。在达到临界点以能维持自身以前,这种涌现行为可能需要暂时与其他相互作用隔离。因此,促进涌现的不仅仅是个体之间连接的绝对数量,还有连接的方式。分层组织就是能够产生涌现行为的例子(政府机构的行为方式可能与政府机构的单个部门大不相同)。 但涌现行为也可能产生于更为分散的组织结构,如市场。在某些情况下,在涌现行为出现之前,系统必须达到多样性、组织性和连通性的组合阈值。
  −
  −
  −
[[Unintended consequence]]s and side effects are closely related to emergent properties. [[Luc Steels]] writes: "A component has a particular functionality but this is not recognizable as a subfunction of the global functionality. Instead a component implements a behaviour whose side effect contributes to the global functionality [...] Each behaviour has a side effect and the sum of the side effects gives the desired functionality".{{Harv|Steels|1990}} In other words, the global or macroscopic functionality of a system with "emergent functionality" is the sum of all "side effects", of all emergent properties and functionalities.
  −
  −
Unintended consequences and side effects are closely related to emergent properties. Luc Steels writes: "A component has a particular functionality but this is not recognizable as a subfunction of the global functionality. Instead a component implements a behaviour whose side effect contributes to the global functionality [...] Each behaviour has a side effect and the sum of the side effects gives the desired functionality". In other words, the global or macroscopic functionality of a system with "emergent functionality" is the sum of all "side effects", of all emergent properties and functionalities.
      
无意识的后果和副作用都与涌现特性密切相关。Luc Steels写道: “一个组件有一个特定的功能,但这不能识别为全局功能的子功能。相反,一个组件实现了一种行为,其副作用有助于实现全局功能[ ... ]每种行为都有副作用,副作用的总和就是整体的功能”。换句话说,具有“涌现功能”系统的全局或宏观功能是所有“副作用”的总和,即所有涌现特性和功能的总和。
 
无意识的后果和副作用都与涌现特性密切相关。Luc Steels写道: “一个组件有一个特定的功能,但这不能识别为全局功能的子功能。相反,一个组件实现了一种行为,其副作用有助于实现全局功能[ ... ]每种行为都有副作用,副作用的总和就是整体的功能”。换句话说,具有“涌现功能”系统的全局或宏观功能是所有“副作用”的总和,即所有涌现特性和功能的总和。
  −
  −
Systems with emergent properties or emergent structures may appear to defy [[entropy|entropic]] principles and the second law of [[thermodynamics]], because they form and increase order despite the lack of command and central control. This is possible because open systems can extract information and order out of the environment.
  −
  −
Systems with emergent properties or emergent structures may appear to defy entropic principles and the second law of thermodynamics, because they form and increase order despite the lack of command and central control. This is possible because open systems can extract information and order out of the environment.
      
具有涌现特性或涌现结构的系统可能看起来有悖熵原理和热力学第二定律,因为尽管缺乏中央的指挥和控制,但他们形成并增加秩序。然而实际上并没有违反,因为开放系统可以从环境中获取信息和秩序。
 
具有涌现特性或涌现结构的系统可能看起来有悖熵原理和热力学第二定律,因为尽管缺乏中央的指挥和控制,但他们形成并增加秩序。然而实际上并没有违反,因为开放系统可以从环境中获取信息和秩序。
第369行: 第186行:  
== 自然界中的涌现结构 ==
 
== 自然界中的涌现结构 ==
   −
[[File:Sand dune ripples.jpg|thumb|280px|right|Ripple patterns in a [[sand dune]] created by wind or water is an example of an emergent structure in nature.]]
+
[[File:Sand dune ripples.jpg|thumb|280px|right|由风或水形成的沙丘的波纹模式是自然界涌现结构的一个例子。]]
   −
Ripple patterns in a [[sand dune created by wind or water is an example of an emergent structure in nature.]]
+
[[File:Causeway-code poet-4.jpg|thumb|right|280px|北爱尔兰的巨人堤道是复杂涌现结构的一个例子。]]
 
  −
由风或水形成的沙丘的波纹模式是自然界涌现结构的一个例子。
  −
 
  −
[[File:Causeway-code poet-4.jpg|thumb|right|280px|[[Giant's Causeway]] in Northern Ireland is an example of a complex emergent structure.|链接=Special:FilePath/Causeway-code_poet-4.jpg]]
  −
 
  −
[[Giant's Causeway in Northern Ireland is an example of a complex emergent structure.]]
  −
 
  −
北爱尔兰的巨人堤道是复杂涌现结构的一个例子。
  −
 
  −
 
  −
 
  −
 
  −
 
  −
Emergent structures can be found in many natural phenomena, from the physical to the biological domain. For example, the shape of weather phenomena such as [[hurricane]]s are emergent structures. The development and growth of complex, orderly [[crystal]]s, as driven by the [[random motion]] of water molecules within a conducive natural environment, is another example of an emergent process, where [[randomness]] can give rise to complex and deeply attractive, orderly structures.
  −
 
  −
Emergent structures can be found in many natural phenomena, from the physical to the biological domain. For example, the shape of weather phenomena such as hurricanes are emergent structures. The development and growth of complex, orderly crystals, as driven by the random motion of water molecules within a conducive natural environment, is another example of an emergent process, where randomness can give rise to complex and deeply attractive, orderly structures.
      
涌现结构可以在从物理到生物的许多自然现象中找到。例如,气象(比如飓风)的形状就是涌现结构。在有利的自然的环境中(--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) conducive natural environment 导电的环境| [[用户:Qige96|Ricky]]: 上下文语境中没有和导电相关的信息,所以我还是改成了直译:有利的自然的环境),由水分子的随机运动驱动复杂有序晶体的发展和生长,是涌现过程的另一个例子,在这种涌现过程中,随机性可以产生复杂而具吸引力的有序结构。
 
涌现结构可以在从物理到生物的许多自然现象中找到。例如,气象(比如飓风)的形状就是涌现结构。在有利的自然的环境中(--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) conducive natural environment 导电的环境| [[用户:Qige96|Ricky]]: 上下文语境中没有和导电相关的信息,所以我还是改成了直译:有利的自然的环境),由水分子的随机运动驱动复杂有序晶体的发展和生长,是涌现过程的另一个例子,在这种涌现过程中,随机性可以产生复杂而具吸引力的有序结构。
      −
[[File:Water Crystals on Mercury 20Feb2010 CU1.jpg|thumb|280px|right|Water crystals forming on glass demonstrate an emergent, [[fractal]] process occurring under appropriate conditions of temperature and humidity.|链接=Special:FilePath/Water_Crystals_on_Mercury_20Feb2010_CU1.jpg]] However, crystalline structure and hurricanes are said to have a self-organizing phase.
+
[[File:Water Crystals on Mercury 20Feb2010 CU1.jpg|thumb|280px|right|在玻璃上形成的水的晶体是一个涌现现象,这是一个在适当的温度和湿度条件下发生的分形过程。不过,晶体结构和飓风都有一个[[自组织]]的阶段。]]  
 
  −
Water crystals forming on glass demonstrate an emergent, [[fractal process occurring under appropriate conditions of temperature and humidity.]] However, crystalline structure and hurricanes are said to have a self-organizing phase.
  −
 
  −
在玻璃上形成的水的晶体是一个涌现现象,这是一个在适当的温度和湿度条件下发生的分形过程。不过,晶体结构和飓风都有一个[[自组织]]的阶段
  −
 
  −
 
  −
It is useful to distinguish three forms of emergent structures. A ''first-order'' emergent structure occurs as a result of shape interactions (for example, [[hydrogen bond]]s in water molecules lead to [[surface tension]]). A ''second-order'' emergent structure involves shape interactions played out sequentially over time (for example, changing atmospheric conditions as a snowflake falls to the ground build upon and alter its form). Finally, a ''third-order'' emergent structure is a consequence of shape, time, and heritable instructions. For example, an organism's [[genetic code]] affects the form of the organism's systems in space and time.
  −
 
  −
It is useful to distinguish three forms of emergent structures. A first-order emergent structure occurs as a result of shape interactions (for example, hydrogen bonds in water molecules lead to surface tension). A second-order emergent structure involves shape interactions played out sequentially over time (for example, changing atmospheric conditions as a snowflake falls to the ground build upon and alter its form). Finally, a third-order emergent structure is a consequence of shape, time, and heritable instructions. For example, an organism's genetic code affects the form of the organism's systems in space and time.
      
涌现结构可以被区分为的三种形式。一级涌现结构是空间相互作用的结果(例如,水分子中的氢键导致表面张力)。二级涌现结构涉及随时间变化的空间的相互作用(例如,当雪花落到地面时,大气环境的变化,会影响雪花的形态)。三级涌现结构是空间、时间和可继承指令的结果。例如,有机体的遗传密码影响着有机体系统在空间和时间上的形式。
 
涌现结构可以被区分为的三种形式。一级涌现结构是空间相互作用的结果(例如,水分子中的氢键导致表面张力)。二级涌现结构涉及随时间变化的空间的相互作用(例如,当雪花落到地面时,大气环境的变化,会影响雪花的形态)。三级涌现结构是空间、时间和可继承指令的结果。例如,有机体的遗传密码影响着有机体系统在空间和时间上的形式。
      
===无生命的物理系统===
 
===无生命的物理系统===
  −
In [[physics]], emergence is used to describe a property, law, or phenomenon which occurs at macroscopic scales (in space or time) but not at microscopic scales, despite the fact that a macroscopic system can be viewed as a very large ensemble of microscopic systems.<ref>{{Cite book|last=Anderson|first=Philip W.|url=https://books.google.com/books?id=9HhQDwAAQBAJ&newbks=0&printsec=frontcover&hl=en#v=onepage&q&f=false|title=Basic Notions Of Condensed Matter Physics|date=2018-03-09|publisher=CRC Press|isbn=978-0-429-97374-1|language=en}}</ref><ref>{{Cite book|last=Girvin|first=Steven M.|url=https://books.google.com/books?id=2ESIDwAAQBAJ&hl=en|title=Modern Condensed Matter Physics|last2=Yang|first2=Kun|date=2019-02-28|publisher=Cambridge University Press|isbn=978-1-108-57347-4|language=en}}</ref>
  −
  −
In physics, emergence is used to describe a property, law, or phenomenon which occurs at macroscopic scales (in space or time) but not at microscopic scales, despite the fact that a macroscopic system can be viewed as a very large ensemble of microscopic systems.
  −
   
在物理学中,涌现被用来描述在宏观尺度(空间或时间)上的性质、规律或现象,尽管一个宏观系统可以被看作是一个非常庞大的微观系统的集合。<ref>{{Cite book|last=Anderson|first=Philip W.|url=https://books.google.com/books?id=9HhQDwAAQBAJ&newbks=0&printsec=frontcover&hl=en#v=onepage&q&f=false|title=Basic Notions Of Condensed Matter Physics|date=2018-03-09|publisher=CRC Press|isbn=978-0-429-97374-1|language=en}}</ref><ref>{{Cite book|last=Girvin|first=Steven M.|url=https://books.google.com/books?id=2ESIDwAAQBAJ&hl=en|title=Modern Condensed Matter Physics|last2=Yang|first2=Kun|date=2019-02-28|publisher=Cambridge University Press|isbn=978-1-108-57347-4|language=en}}</ref>
 
在物理学中,涌现被用来描述在宏观尺度(空间或时间)上的性质、规律或现象,尽管一个宏观系统可以被看作是一个非常庞大的微观系统的集合。<ref>{{Cite book|last=Anderson|first=Philip W.|url=https://books.google.com/books?id=9HhQDwAAQBAJ&newbks=0&printsec=frontcover&hl=en#v=onepage&q&f=false|title=Basic Notions Of Condensed Matter Physics|date=2018-03-09|publisher=CRC Press|isbn=978-0-429-97374-1|language=en}}</ref><ref>{{Cite book|last=Girvin|first=Steven M.|url=https://books.google.com/books?id=2ESIDwAAQBAJ&hl=en|title=Modern Condensed Matter Physics|last2=Yang|first2=Kun|date=2019-02-28|publisher=Cambridge University Press|isbn=978-1-108-57347-4|language=en}}</ref>
  −
  −
  −
An emergent property need not be more complicated than the underlying non-emergent properties which generate it. For instance, the laws of [[thermodynamics]] are remarkably simple, even if the laws which govern the interactions between component particles are complex. The term emergence in physics is thus used not to signify complexity, but rather to distinguish which laws and concepts apply to macroscopic scales, and which ones apply to microscopic scales.
  −
  −
An emergent property need not be more complicated than the underlying non-emergent properties which generate it. For instance, the laws of thermodynamics are remarkably simple, even if the laws which govern the interactions between component particles are complex. The term emergence in physics is thus used not to signify complexity, but rather to distinguish which laws and concepts apply to macroscopic scales, and which ones apply to microscopic scales.
      
涌现属性不必比生成它的底层非涌现属性更复杂。例如,热力学定律是非常简单的,即使粒子之间相互作用的法则是复杂的。因此,物理学中的涌现一词不是用来表示复杂性,而是用来区分哪些定律和概念适用于宏观尺度,哪些定律和概念适用于微观尺度。
 
涌现属性不必比生成它的底层非涌现属性更复杂。例如,热力学定律是非常简单的,即使粒子之间相互作用的法则是复杂的。因此,物理学中的涌现一词不是用来表示复杂性,而是用来区分哪些定律和概念适用于宏观尺度,哪些定律和概念适用于微观尺度。
  −
  −
However, another, perhaps more broadly applicable way to conceive of the emergent divide does involve a dose of complexity insofar as the computational feasibility of going from the microscopic to the macroscopic property tells the 'strength' of the emergence. This is better understood given the following definition of emergence that comes from physics:
  −
  −
However, another, perhaps more broadly applicable way to conceive of the emergent divide does involve a dose of complexity insofar as the computational feasibility of going from the microscopic to the macroscopic property tells the 'strength' of the emergence. This is better understood given the following definition of emergence that comes from physics:
      
还有另一种关于涌现的设想,它也许更广泛适用,但这种方法涉及到一定程度的复杂性:从微观到宏观上的计算可行性可以告诉我们涌现的“强度”。如果考虑到以下来自物理学的涌现的定义,可以更好地理解:
 
还有另一种关于涌现的设想,它也许更广泛适用,但这种方法涉及到一定程度的复杂性:从微观到宏观上的计算可行性可以告诉我们涌现的“强度”。如果考虑到以下来自物理学的涌现的定义,可以更好地理解:
    
<blockquote>
 
<blockquote>
"An emergent behavior of a physical system is a qualitative property that can only occur in the limit that the number of microscopic constituents tends to infinity."<ref>{{cite journal |last1=Kivelson |first1=Sophia |last2=Kivelson |first2=Steve |title=Defining Emergence in Physics |journal=NPJ Quantum Materials |volume=1 |publisher=Nature Research |doi=10.1038/npjquantmats.2016.24 |year=2016 |doi-access=free }}</ref>
+
“物理系统的涌现行为是一种定性性质,只有在微观成分的数量趋于无穷大的情况下才能发生。”<ref>{{cite journal |last1=Kivelson |first1=Sophia |last2=Kivelson |first2=Steve |title=Defining Emergence in Physics |journal=NPJ Quantum Materials |volume=1 |publisher=Nature Research |doi=10.1038/npjquantmats.2016.24 |year=2016 |doi-access=free }}</ref>
 
  −
"An emergent behavior of a physical system is a qualitative property that can only occur in the limit that the number of microscopic constituents tends to infinity."
  −
 
  −
物理系统的涌现行为是一种定性性质,只有在微观成分的数量趋于无穷大的情况下才能发生。<ref>{{cite journal |last1=Kivelson |first1=Sophia |last2=Kivelson |first2=Steve |title=Defining Emergence in Physics |journal=NPJ Quantum Materials |volume=1 |publisher=Nature Research |doi=10.1038/npjquantmats.2016.24 |year=2016 |doi-access=free }}</ref>
   
</blockquote>
 
</blockquote>
  −
  −
Since there are no actually infinite systems in the real world, there is no obvious naturally occurring notion of a hard separation between the properties of the constituents of a system and those of the emergent whole. As discussed below, classical mechanics is thought to be emergent from quantum mechanics, though in principle, quantum dynamics fully describes everything happening at a classical level. However, it would take a computer larger than the size of the universe with more computing time than life time of the universe to describe the motion of a falling apple in terms of the locations of its electrons {{citation needed|date=November 2018}}; thus we can take this to be a "strong" emergent divide.
  −
  −
Since there are no actually infinite systems in the real world, there is no obvious naturally occurring notion of a hard separation between the properties of the constituents of a system and those of the emergent whole. As discussed below, classical mechanics is thought to be emergent from quantum mechanics, though in principle, quantum dynamics fully describes everything happening at a classical level. However, it would take a computer larger than the size of the universe with more computing time than life time of the universe to describe the motion of a falling apple in terms of the locations of its electrons ; thus we can take this to be a "strong" emergent divide.
      
因为在现实世界中不存在无限的系统,所以一个系统的组成部分的属性和涌现的整体的属性之间,并不存在自然产生的明显的区分。正如下面所讨论的,经典力学被认为是从量子力学中涌现出来的,尽管在原则上,量子力学完全描述了在经典水平上发生的一切。然而,需要一台比宇宙更大的计算机,计算比宇宙的生命时间更长的时间,才能根据电子的位置来描述一个下落的苹果的运动,因此我们可以把这看作一个“强”涌现在宏观和微观世界的区分。
 
因为在现实世界中不存在无限的系统,所以一个系统的组成部分的属性和涌现的整体的属性之间,并不存在自然产生的明显的区分。正如下面所讨论的,经典力学被认为是从量子力学中涌现出来的,尽管在原则上,量子力学完全描述了在经典水平上发生的一切。然而,需要一台比宇宙更大的计算机,计算比宇宙的生命时间更长的时间,才能根据电子的位置来描述一个下落的苹果的运动,因此我们可以把这看作一个“强”涌现在宏观和微观世界的区分。
  −
  −
Some examples include:
      
一些例子包括:
 
一些例子包括:
  −
* [[Classical mechanics]]: The laws of classical mechanics can be said to emerge as a limiting case from the rules of [[quantum mechanics]] applied to large enough masses. This is particularly strange since quantum mechanics is generally thought of as ''more'' complicated than classical mechanics.
  −
   
* [[经典力学]] : 可以说经典力学的定律是从量子力学定律中涌现的,适用于足够大物质。这一点特别奇怪,因为人们通常认为量子力学比经典力学更复杂。
 
* [[经典力学]] : 可以说经典力学的定律是从量子力学定律中涌现的,适用于足够大物质。这一点特别奇怪,因为人们通常认为量子力学比经典力学更复杂。
  −
* [[Friction]]: Forces between elementary particles are conservative. However, friction emerges when considering more complex structures of matter, whose surfaces can convert mechanical energy into heat energy when rubbed against each other. Similar considerations apply to other emergent concepts in [[continuum mechanics]] such as [[viscosity]], [[Elasticity (physics)|elasticity]], [[tensile strength]], etc.
  −
  −
  −
  −
Friction: Forces between elementary particles are conservative. However, friction emerges when considering more complex structures of matter, whose surfaces can convert mechanical energy into heat energy when rubbed against each other. Similar considerations apply to other emergent concepts in continuum mechanics such as viscosity, Elasticity (physics)|elasticity, tensile strength, etc.
      
* 摩擦力: 基本粒子之间的力是''[https://baike.baidu.com/item/%E4%BF%9D%E5%AE%88%E5%8A%9B 保守力]''。然而,当考虑到物质更复杂的结构时,摩擦就涌现了。物质表面相互摩擦时,机械能转化为热能。类似的涌现现象也适用于连续介质力学中的概念,如粘度、弹性、抗拉强度等。
 
* 摩擦力: 基本粒子之间的力是''[https://baike.baidu.com/item/%E4%BF%9D%E5%AE%88%E5%8A%9B 保守力]''。然而,当考虑到物质更复杂的结构时,摩擦就涌现了。物质表面相互摩擦时,机械能转化为热能。类似的涌现现象也适用于连续介质力学中的概念,如粘度、弹性、抗拉强度等。
  −
* [[Patterned ground]]: the distinct, and often symmetrical geometric shapes formed by ground material in periglacial regions.
  −
  −
Patterned ground: the distinct, and often symmetrical geometric shapes formed by ground material in periglacial regions.
      
* '''花样表面 Patterned Ground''': 花样表面是在冰缘地区由地面材料形成的明显的,通常是对称的几何图形。
 
* '''花样表面 Patterned Ground''': 花样表面是在冰缘地区由地面材料形成的明显的,通常是对称的几何图形。
  −
* [[Statistical mechanics]] was initially derived using the concept of a large enough [[statistical ensemble (mathematical physics)|ensemble]] that fluctuations about the most likely distribution can be all but ignored. However, small clusters do not exhibit sharp first order [[phase transition]]s such as melting, and at the boundary it is not possible to completely categorize the cluster as a liquid or solid, since these concepts are (without extra definitions) only applicable to macroscopic systems.  Describing a system using statistical mechanics methods is much simpler than using a low-level atomistic approach.
  −
  −
Statistical mechanics was initially derived using the concept of a large enough statistical ensemble (mathematical physics)|ensemble that fluctuations about the most likely distribution can be all but ignored. However, small clusters do not exhibit sharp first order phase transitions such as melting, and at the boundary it is not possible to completely categorize the cluster as a liquid or solid, since these concepts are (without extra definitions) only applicable to macroscopic systems.  Describing a system using statistical mechanics methods is much simpler than using a low-level atomistic approach.
      
* 统计力学最初是用一个足够大的统计学集合概念推导出来的,其中概率分布的各种波动可以忽略不计。然而,小的团簇并不会表现出明显的一级相变,例如熔化,而且在边界上不可能完全将团簇归类为液体或固体,因为这些概念(再没有额外的定义的情况下)只适用于宏观系统。使用统计力学方法描述一个系统要比使用低层次的原子论方法简单得多。
 
* 统计力学最初是用一个足够大的统计学集合概念推导出来的,其中概率分布的各种波动可以忽略不计。然而,小的团簇并不会表现出明显的一级相变,例如熔化,而且在边界上不可能完全将团簇归类为液体或固体,因为这些概念(再没有额外的定义的情况下)只适用于宏观系统。使用统计力学方法描述一个系统要比使用低层次的原子论方法简单得多。
  −
* [[Electrical networks]]: The bulk conductive response of binary (RC) electrical networks with random arrangements, known as the [[Universal dielectric response|Universal Dielectric Response (UDR)]], can be seen as emergent properties of such physical systems. Such arrangements can be used as simple physical prototypes for deriving mathematical formulae for the emergent responses of complex systems.<ref>{{cite journal|url = | doi=10.1016/j.physa.2012.10.035 | volume=392 | issue=4 | title=The origin of power-law emergent scaling in large binary networks | year=2013 | journal=Physica A: Statistical Mechanics and Its Applications | pages=1004–1027 | last1 = Almond | first1 = D.P. | last2 = Budd | first2 = C.J. | last3 = Freitag | first3 = M.A. | last4 = Hunt | first4 = G.W. | last5 = McCullen | first5 = N.J. | last6 = Smith | first6 = N.D.| arxiv=1204.5601 | bibcode=2013PhyA..392.1004A }}</ref>
  −
  −
Electrical networks: The bulk conductive response of binary (RC) electrical networks with random arrangements, known as the Universal Dielectric Response (UDR), can be seen as emergent properties of such physical systems. Such arrangements can be used as simple physical prototypes for deriving mathematical formulae for the emergent responses of complex systems.
      
* 电气网络: 具有随机排列的'''二元电网的体传导响应 bulk conductive response of binary (RC)''',称为'''通用介电响应 Universal Dielectric Response (UDR)''' ,可以看作是这种物理系统的涌现特性。这样的排列可以被用作简单的物理原型系统,用于推导复杂系统涌现现象的数学公式。<ref>{{cite journal|url = | doi=10.1016/j.physa.2012.10.035 | volume=392 | issue=4 | title=The origin of power-law emergent scaling in large binary networks | year=2013 | journal=Physica A: Statistical Mechanics and Its Applications | pages=1004–1027 | last1 = Almond | first1 = D.P. | last2 = Budd | first2 = C.J. | last3 = Freitag | first3 = M.A. | last4 = Hunt | first4 = G.W. | last5 = McCullen | first5 = N.J. | last6 = Smith | first6 = N.D.| arxiv=1204.5601 | bibcode=2013PhyA..392.1004A }}</ref>
 
* 电气网络: 具有随机排列的'''二元电网的体传导响应 bulk conductive response of binary (RC)''',称为'''通用介电响应 Universal Dielectric Response (UDR)''' ,可以看作是这种物理系统的涌现特性。这样的排列可以被用作简单的物理原型系统,用于推导复杂系统涌现现象的数学公式。<ref>{{cite journal|url = | doi=10.1016/j.physa.2012.10.035 | volume=392 | issue=4 | title=The origin of power-law emergent scaling in large binary networks | year=2013 | journal=Physica A: Statistical Mechanics and Its Applications | pages=1004–1027 | last1 = Almond | first1 = D.P. | last2 = Budd | first2 = C.J. | last3 = Freitag | first3 = M.A. | last4 = Hunt | first4 = G.W. | last5 = McCullen | first5 = N.J. | last6 = Smith | first6 = N.D.| arxiv=1204.5601 | bibcode=2013PhyA..392.1004A }}</ref>
  −
  −
[[Temperature]] is sometimes used as an example of an emergent macroscopic behaviour. In classical dynamics, a ''snapshot'' of the instantaneous momenta of a large number of particles at equilibrium is sufficient to find the average kinetic energy per degree of freedom which is proportional to the temperature. For a small number of particles the instantaneous momenta at a given time are not statistically sufficient to determine the temperature of the system. However, using the [[ergodic hypothesis]], the temperature can still be obtained to arbitrary precision by further averaging the momenta over a long enough time.
  −
  −
Temperature is sometimes used as an example of an emergent macroscopic behaviour. In classical dynamics, a snapshot of the instantaneous momenta of a large number of particles at equilibrium is sufficient to find the average kinetic energy per degree of freedom which is proportional to the temperature. For a small number of particles the instantaneous momenta at a given time are not statistically sufficient to determine the temperature of the system. However, using the ergodic hypothesis, the temperature can still be obtained to arbitrary precision by further averaging the momenta over a long enough time.
      
* 温度有时被用来作为一个涌现的宏观行为的例子。在经典动力学中,测量到处于平衡状态的大量粒子的瞬时动量就可以求出每个自由度的平均动能,而平均动能与温度成正比。对于少数粒子,在给定时间的瞬时动量不足以计算出系统的温度。然而,使用'''遍历假设 Ergodic Hypothesis''',任意精度的温度仍然可以通过在足够长的时间内对这少量例子动量的平均而得到。
 
* 温度有时被用来作为一个涌现的宏观行为的例子。在经典动力学中,测量到处于平衡状态的大量粒子的瞬时动量就可以求出每个自由度的平均动能,而平均动能与温度成正比。对于少数粒子,在给定时间的瞬时动量不足以计算出系统的温度。然而,使用'''遍历假设 Ergodic Hypothesis''',任意精度的温度仍然可以通过在足够长的时间内对这少量例子动量的平均而得到。
  −
  −
  −
[[Convection]] in a liquid or gas is another example of emergent macroscopic behaviour that makes sense only when considering differentials of temperature. [[Convection cells]], particularly [[Bénard cells]], are an example of a [[self-organizing]] system (more specifically, a [[dissipative system]]) whose structure is determined both by the constraints of the system and by random perturbations: the possible realizations of the shape and size of the cells depends on the temperature gradient as well as the nature of the fluid and shape of the container, but which configurations are actually realized is due to random perturbations (thus these systems exhibit a form of [[symmetry breaking]]).
  −
  −
Convection in a liquid or gas is another example of emergent macroscopic behaviour that makes sense only when considering differentials of temperature. Convection cells, particularly Bénard cells, are an example of a self-organizing system (more specifically, a dissipative system) whose structure is determined both by the constraints of the system and by random perturbations: the possible realizations of the shape and size of the cells depends on the temperature gradient as well as the nature of the fluid and shape of the container, but which configurations are actually realized is due to random perturbations (thus these systems exhibit a form of symmetry breaking).
      
* 液体或气体中的'''对流 Convection'''是另一个涌现宏观行为的例子,只有在考虑温差时才有意义。'''对流单体 Convection Cells''',特别是 Bénard 单体,是一个自组织系统(更具体地说,是一个'''耗散系统 Dissipative System''')的例子,其结构由系统的约束和随机扰动共同决定:细胞的形状和大小可能取决于温度梯度以及流体的性质和容器的形状,但实际上实现的配置是由于随机扰动(因此这些系统呈现一种'''对称破缺 Symmetry Breaking'''形式)。
 
* 液体或气体中的'''对流 Convection'''是另一个涌现宏观行为的例子,只有在考虑温差时才有意义。'''对流单体 Convection Cells''',特别是 Bénard 单体,是一个自组织系统(更具体地说,是一个'''耗散系统 Dissipative System''')的例子,其结构由系统的约束和随机扰动共同决定:细胞的形状和大小可能取决于温度梯度以及流体的性质和容器的形状,但实际上实现的配置是由于随机扰动(因此这些系统呈现一种'''对称破缺 Symmetry Breaking'''形式)。
  −
  −
  −
  −
  −
In some theories of particle physics, even such basic structures as [[mass]], [[space]], and [[time]] are viewed as emergent phenomena, arising from more fundamental concepts such as the [[Higgs boson]] or [[string theory|strings]]. In some interpretations of [[quantum mechanics]], the perception of a [[deterministic]] reality, in which all objects have a definite position, momentum, and so forth, is actually an emergent phenomenon, with the true state of matter being described instead by a [[wavefunction]] which need not have a single position or momentum.
  −
  −
In some theories of particle physics, even such basic structures as mass, space, and time are viewed as emergent phenomena, arising from more fundamental concepts such as the Higgs boson or strings. In some interpretations of quantum mechanics, the perception of a deterministic reality, in which all objects have a definite position, momentum, and so forth, is actually an emergent phenomenon, with the true state of matter being described instead by a wavefunction which need not have a single position or momentum.
      
在一些粒子物理学理论中,甚至是质量、空间和时间这样的基本结构都被视为来自于更基本的概念(比如'''希格斯玻色子 Higgs Boson'''或者'''弦 Strings''')的涌现现象。在某些量子力学诠释中,对所有物体都具有确定的位置、动量等等的确定性感知,实际上是一种涌现现象,因为物质的真实状态是被波函数所描述的,而这这些波函数不需要单一位置或动量的。
 
在一些粒子物理学理论中,甚至是质量、空间和时间这样的基本结构都被视为来自于更基本的概念(比如'''希格斯玻色子 Higgs Boson'''或者'''弦 Strings''')的涌现现象。在某些量子力学诠释中,对所有物体都具有确定的位置、动量等等的确定性感知,实际上是一种涌现现象,因为物质的真实状态是被波函数所描述的,而这这些波函数不需要单一位置或动量的。
  −
  −
Most of the laws of [[physics]] themselves as we experience them today appear to have emerged during the course of time making emergence the most fundamental principle in the universe{{According to whom|date=September 2016}} and raising the question of what might be the most fundamental law of physics from which all others emerged. [[Chemistry]] can in turn be viewed as an emergent property of the laws of physics. [[Biology]] (including biological [[evolution]]) can be viewed as an emergent property of the laws of chemistry. Similarly, [[psychology]] could be understood as an emergent property of neurobiological laws. Finally, free-market theories understand [[economy]] as an emergent feature of psychology.
  −
  −
Most of the laws of physics themselves as we experience them today appear to have emerged during the course of time making emergence the most fundamental principle in the universe and raising the question of what might be the most fundamental law of physics from which all others emerged. Chemistry can in turn be viewed as an emergent property of the laws of physics. Biology (including biological evolution) can be viewed as an emergent property of the laws of chemistry. Similarly, psychology could be understood as an emergent property of neurobiological laws. Finally, free-market theories understand economy as an emergent feature of psychology.
      
我们今天所经历的大多数物理定律,似乎都是在时间的推移中出现的,这使得涌现成为宇宙中最基本的定律,同时出现了一个问题:什么可能是物理学中最基本的定律,而其他所有定律都是从这个定律中涌现而来的?化学可以被看作是物理定律的一种涌现。生物学(包括生物进化)可以看作是化学定律的涌现。同样,心理学也可以被理解为神经生物学定律的一种涌现。最后,经济学中的自由市场理论是心理学的一个涌现。
 
我们今天所经历的大多数物理定律,似乎都是在时间的推移中出现的,这使得涌现成为宇宙中最基本的定律,同时出现了一个问题:什么可能是物理学中最基本的定律,而其他所有定律都是从这个定律中涌现而来的?化学可以被看作是物理定律的一种涌现。生物学(包括生物进化)可以看作是化学定律的涌现。同样,心理学也可以被理解为神经生物学定律的一种涌现。最后,经济学中的自由市场理论是心理学的一个涌现。
  −
  −
  −
According to Laughlin (2005), for many particle systems, nothing can be calculated exactly from the microscopic equations, and macroscopic systems are characterised by broken symmetry: the symmetry present in the microscopic equations is not present in the macroscopic system, due to phase transitions. As a result, these macroscopic systems are described in their own terminology, and have properties that do not depend on many microscopic details. This does not mean that the microscopic interactions are irrelevant, but simply that you do not see them anymore&nbsp;— you only see a renormalized effect of them. Laughlin is a pragmatic theoretical physicist: if you cannot, possibly ever, calculate the broken symmetry macroscopic properties from the microscopic equations, then what is the point of talking about reducibility?
  −
  −
According to Laughlin (2005), for many particle systems, nothing can be calculated exactly from the microscopic equations, and macroscopic systems are characterised by broken symmetry: the symmetry present in the microscopic equations is not present in the macroscopic system, due to phase transitions. As a result, these macroscopic systems are described in their own terminology, and have properties that do not depend on many microscopic details. This does not mean that the microscopic interactions are irrelevant, but simply that you do not see them anymore&nbsp;— you only see a renormalized effect of them. Laughlin is a pragmatic theoretical physicist: if you cannot, possibly ever, calculate the broken symmetry macroscopic properties from the microscopic equations, then what is the point of talking about reducibility?
      
Laughlin(2005)认为,对于许多粒子系统来说,从微观方程中无法精确地计算出任何东西,宏观系统是通过破缺的对称性来刻画: 由于相变的存在,微观方程中存在的对称性无法在宏观系统中存在。因此,这些宏观系统需要用它们自己的术语来描述,并且具有许多不依赖微观细节的性质。这并不意味着宏观性质和微观的相互作用无关,只是你不再看到它们了,你只看到它们的'''重整化效应 Renormalized Effect'''。Laughlin是一个务实的理论物理学家:如果你不能从微观尺度的方程中计算出对称性破缺的宏观性质,那么谈论'''还原性 Reducibility'''还有什么意义?
 
Laughlin(2005)认为,对于许多粒子系统来说,从微观方程中无法精确地计算出任何东西,宏观系统是通过破缺的对称性来刻画: 由于相变的存在,微观方程中存在的对称性无法在宏观系统中存在。因此,这些宏观系统需要用它们自己的术语来描述,并且具有许多不依赖微观细节的性质。这并不意味着宏观性质和微观的相互作用无关,只是你不再看到它们了,你只看到它们的'''重整化效应 Renormalized Effect'''。Laughlin是一个务实的理论物理学家:如果你不能从微观尺度的方程中计算出对称性破缺的宏观性质,那么谈论'''还原性 Reducibility'''还有什么意义?
第522行: 第234行:     
==== 涌现与演化====
 
==== 涌现与演化====
  −
  −
[[Life]] is a major source of complexity, and [[evolution]] is the major process behind the varying forms of life. In this view, evolution is the process describing the growth of complexity in the natural world and in speaking of the emergence of complex living beings and life-forms, this view refers therefore to processes of sudden changes in evolution.
  −
  −
Life is a major source of complexity, and evolution is the major process behind the varying forms of life. In this view, evolution is the process describing the growth of complexity in the natural world and in speaking of the emergence of complex living beings and life-forms, this view refers therefore to processes of sudden changes in evolution.
  −
   
生命是复杂性的主要来源,进化是不同生命形式背后的主要过程。这种观点认为,进化是描述自然界中复杂性增长的过程。在谈到复杂生物和生命形式的涌现时,这种观点是指进化中的突变就是复杂性的主要来源。
 
生命是复杂性的主要来源,进化是不同生命形式背后的主要过程。这种观点认为,进化是描述自然界中复杂性增长的过程。在谈到复杂生物和生命形式的涌现时,这种观点是指进化中的突变就是复杂性的主要来源。
   第533行: 第239行:     
[[Life]] is thought to have emerged in the early [[RNA world hypothesis|RNA world]] when [[RNA]] chains began to express the basic conditions necessary for natural selection to operate as conceived by [[Charles Darwin|Darwin]]: heritability, variation of type, and competition for limited resources. [[Fitness (biology)|Fitness]] of an RNA replicator (its per capita rate of increase) would likely be a function of adaptive capacities that were intrinsic (in the sense that they were determined by the nucleotide sequence) and the availability of resources.<ref name="Bernstein">{{cite journal | last1 = Bernstein | first1 = H | last2 = Byerly | first2 = HC | last3 = Hopf | first3 = FA | last4 = Michod | first4 = RA | last5 = Vemulapalli | first5 = GK | year = 1983 | title = The Darwinian Dynamic | journal = Quarterly Review of Biology | volume = 58 | issue = 2| pages = 185–207 | doi=10.1086/413216| jstor = 2828805 }}</ref><ref name="Michod">Michod RE. (2000) Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality. Princeton University Press, Princeton, New Jersey {{ISBN|0691050112}}</ref> The three primary adaptive capacities may have been (1) the capacity to replicate with moderate fidelity (giving rise to both heritability and variation of type); (2) the capacity to avoid decay; and (3) the capacity to acquire and process resources.<ref name=Bernstein /><ref name =Michod /> These capacities would have been determined initially by the folded configurations of the RNA replicators (see “[[Ribozyme]]”) that, in turn, would be encoded in their individual nucleotide sequences. Competitive success among different replicators would have depended on the relative values of these adaptive capacities.
 
[[Life]] is thought to have emerged in the early [[RNA world hypothesis|RNA world]] when [[RNA]] chains began to express the basic conditions necessary for natural selection to operate as conceived by [[Charles Darwin|Darwin]]: heritability, variation of type, and competition for limited resources. [[Fitness (biology)|Fitness]] of an RNA replicator (its per capita rate of increase) would likely be a function of adaptive capacities that were intrinsic (in the sense that they were determined by the nucleotide sequence) and the availability of resources.<ref name="Bernstein">{{cite journal | last1 = Bernstein | first1 = H | last2 = Byerly | first2 = HC | last3 = Hopf | first3 = FA | last4 = Michod | first4 = RA | last5 = Vemulapalli | first5 = GK | year = 1983 | title = The Darwinian Dynamic | journal = Quarterly Review of Biology | volume = 58 | issue = 2| pages = 185–207 | doi=10.1086/413216| jstor = 2828805 }}</ref><ref name="Michod">Michod RE. (2000) Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality. Princeton University Press, Princeton, New Jersey {{ISBN|0691050112}}</ref> The three primary adaptive capacities may have been (1) the capacity to replicate with moderate fidelity (giving rise to both heritability and variation of type); (2) the capacity to avoid decay; and (3) the capacity to acquire and process resources.<ref name=Bernstein /><ref name =Michod /> These capacities would have been determined initially by the folded configurations of the RNA replicators (see “[[Ribozyme]]”) that, in turn, would be encoded in their individual nucleotide sequences. Competitive success among different replicators would have depended on the relative values of these adaptive capacities.
  −
Life is thought to have emerged in the early RNA world when RNA chains began to express the basic conditions necessary for natural selection to operate as conceived by Darwin: heritability, variation of type, and competition for limited resources. Fitness of an RNA replicator (its per capita rate of increase) would likely be a function of adaptive capacities that were intrinsic (in the sense that they were determined by the nucleotide sequence) and the availability of resources. The three primary adaptive capacities may have been (1) the capacity to replicate with moderate fidelity (giving rise to both heritability and variation of type); (2) the capacity to avoid decay; and (3) the capacity to acquire and process resources. These capacities would have been determined initially by the folded configurations of the RNA replicators (see “Ribozyme”) that, in turn, would be encoded in their individual nucleotide sequences. Competitive success among different replicators would have depended on the relative values of these adaptive capacities.
      
生命被认为是在早期的 RNA 世界中出现的。那时 RNA 链展示出了达尔文所构想的自然选择运作的基本条件: 遗传、变异、和对有限资源的竞争。'''RNA 复制器 RNA Replicators'''的固有的适应能力(亦即RNA的平均增长率,在某种意义上说,它们是由核酸序列决定的)和''可用资源''的函数。
 
生命被认为是在早期的 RNA 世界中出现的。那时 RNA 链展示出了达尔文所构想的自然选择运作的基本条件: 遗传、变异、和对有限资源的竞争。'''RNA 复制器 RNA Replicators'''的固有的适应能力(亦即RNA的平均增长率,在某种意义上说,它们是由核酸序列决定的)和''可用资源''的函数。
1,068

个编辑