第42行: |
第42行: |
| '''库尔特·弗里德里希·哥德尔 Kurt Friedrich Gödel'''(1906年4月28日至1978年1月14日)是一位逻辑学家、数学家和分析哲学家。与[[亚里士多德 Aristotle]]和[[哥特洛布·弗雷格 Gottlob Frege]]一起被认为是历史上最重要的逻辑学家之一。当时其他人,如伯特兰·罗素 Bertrand Russell、<ref name="Stanford&Son">For instance, in their ''[http://plato.stanford.edu/entries/principia-mathematica/ Principia Mathematica]'' (''Stanford Encyclopedia of Philosophy'' edition).</ref>阿尔弗雷德·诺斯·怀特黑德 Alfred North Whitehead<ref name="Stanford&Son"/> 和大卫·希尔伯特 David Hilbert都在分析逻辑和[[集合论]]的使用,以理解乔治·坎托 Georg Cantor开创的数学基础。 | | '''库尔特·弗里德里希·哥德尔 Kurt Friedrich Gödel'''(1906年4月28日至1978年1月14日)是一位逻辑学家、数学家和分析哲学家。与[[亚里士多德 Aristotle]]和[[哥特洛布·弗雷格 Gottlob Frege]]一起被认为是历史上最重要的逻辑学家之一。当时其他人,如伯特兰·罗素 Bertrand Russell、<ref name="Stanford&Son">For instance, in their ''[http://plato.stanford.edu/entries/principia-mathematica/ Principia Mathematica]'' (''Stanford Encyclopedia of Philosophy'' edition).</ref>阿尔弗雷德·诺斯·怀特黑德 Alfred North Whitehead<ref name="Stanford&Son"/> 和大卫·希尔伯特 David Hilbert都在分析逻辑和[[集合论]]的使用,以理解乔治·坎托 Georg Cantor开创的数学基础。 |
| | | |
− |
| |
− |
| |
− |
| |
− |
| |
− | Gödel published his two [[Gödel's incompleteness theorems|incompleteness theorems]] in 1931 when he was 25 years old, one year after finishing his doctorate at the [[University of Vienna]]. The first incompleteness theorem states that for any self-consistent [[recursive set|recursive]] [[axiomatic system]] powerful enough to describe the arithmetic of the [[natural number]]s (for example [[Peano arithmetic]]), there are true propositions about the natural numbers that cannot be proved from the [[axioms]]. To prove this theorem, Gödel developed a technique now known as [[Gödel numbering]], which codes formal expressions as natural numbers.
| |
| | | |
| 1931年,25岁的哥德尔在[[维也纳大学]完成博士学位一年后,发表了两篇[[哥德尔不完全性定理|不完全性定理]]。第一个不完全性定理指出,对于任何强大到足以描述[[自然数]]的算术的自洽[[递归集|递归]][[公理系统]],都存在无法从[[公理]]证明的关于自然数的真实命题。为了证明这个定理,哥德尔发展了一种技术,现在称为[[哥德尔编码]],它将形式表达式编码为自然数。 | | 1931年,25岁的哥德尔在[[维也纳大学]完成博士学位一年后,发表了两篇[[哥德尔不完全性定理|不完全性定理]]。第一个不完全性定理指出,对于任何强大到足以描述[[自然数]]的算术的自洽[[递归集|递归]][[公理系统]],都存在无法从[[公理]]证明的关于自然数的真实命题。为了证明这个定理,哥德尔发展了一种技术,现在称为[[哥德尔编码]],它将形式表达式编码为自然数。 |
| | | |
− | Gödel automatically became a Czechoslovak citizen at age 12 when the Austro-Hungarian Empire collapsed, following its defeat in the World War I. (According to his classmate , like many residents of the predominantly German , "Gödel considered himself always Austrian and an exile in Czechoslovakia".) In February 1929 he was granted release from his Czechoslovakian citizenship and then, in April, granted Austrian citizenship. When Germany annexed Austria in 1938, Gödel automatically became a German citizen at age 32. After World War II (1948), at the age of 42, he became an American citizen.
| |
| | | |
| 哥德尔在12岁时自动成为捷克斯洛伐克公民,因为奥匈帝国在第一次世界大战中失败而垮台。(根据他的同学的说法,像许多德国人占多数的居民一样,“哥德尔认为自己一直是奥地利人,是捷克斯洛伐克的流亡者”。)1929年2月,他被授予捷克斯洛伐克公民身份,并于4月被授予奥地利公民身份。1938年德国吞并奥地利时,哥德尔在32岁时自动成为德国公民。第二次世界大战后(1948年) ,42岁的他成为了美国公民。 | | 哥德尔在12岁时自动成为捷克斯洛伐克公民,因为奥匈帝国在第一次世界大战中失败而垮台。(根据他的同学的说法,像许多德国人占多数的居民一样,“哥德尔认为自己一直是奥地利人,是捷克斯洛伐克的流亡者”。)1929年2月,他被授予捷克斯洛伐克公民身份,并于4月被授予奥地利公民身份。1938年德国吞并奥地利时,哥德尔在32岁时自动成为德国公民。第二次世界大战后(1948年) ,42岁的他成为了美国公民。 |
| | | |
− |
| |
− |
| |
− | He also showed that neither the [[axiom of choice]] nor the [[continuum hypothesis]] can be disproved from the accepted [[axiomatic set theory|axioms of set theory]], assuming these axioms are consistent. The former result opened the door for mathematicians to assume the axiom of choice in their proofs. He also made important contributions to [[proof theory]] by clarifying the connections between [[classical logic]], [[intuitionistic logic]], and [[modal logic]].
| |
| | | |
| 他还指出,如若这些公理一致,[[选择公理]]和[[连续性假设]]都不能从公认的[[公理集理论|集合论公理]]中证伪。前一个结果为数学家在证明中假设选择公理打开了大门。他还通过澄清[[经典逻辑]]、[[直觉逻辑]]和[[模态逻辑]]之间的联系,对[[证明理论]]作出了重要贡献。 | | 他还指出,如若这些公理一致,[[选择公理]]和[[连续性假设]]都不能从公认的[[公理集理论|集合论公理]]中证伪。前一个结果为数学家在证明中假设选择公理打开了大门。他还通过澄清[[经典逻辑]]、[[直觉逻辑]]和[[模态逻辑]]之间的联系,对[[证明理论]]作出了重要贡献。 |
| | | |
− | In his family, young Kurt was known as ("Mr. Why") because of his insatiable curiosity. According to his brother Rudolf, at the age of six or seven Kurt suffered from rheumatic fever; he completely recovered, but for the rest of his life he remained convinced that his heart had suffered permanent damage. Beginning at age four, Gödel suffered from "frequent episodes of poor health", which would continue for his entire life.
| |
| | | |
− | 在他的家庭里,年轻的库尔特因为他贪得无厌的好奇心被称为(“为什么先生”) 。据库尔特的哥哥鲁道夫说,库尔特在六七岁的时候得了风湿热,他已经完全康复了,但是在他的余生里,他始终坚信他的心脏受到了永久性的损伤。从四岁开始,哥德尔就患有“频繁发作的健康状况不佳” ,这种状况一直持续到他的一生。
| + | ===童年=== |
| + | 哥德尔于1906年4月28日出生于布吕尼,出生于奥地利-匈牙利(现布尔诺,捷克共和国)的德国家庭,家中有一家纺织厂的经理Rudolf Gödel(1874-1929),Marianne Gödel(1879-1966年)。<ref>Dawson 1997, pp. 3–4.</ref> 在他的一生中,哥德尔始终与母亲保持着亲密的关系;他们的通信往来频繁而广泛。<ref>{{Cite book|url=http://plato.stanford.edu/archives/win2015/entries/johann-herbart/|title=Johann Friedrich Herbart|last=Kim|first=Alan|date=2015-01-01|editor-last=Zalta|editor-first=Edward N.|edition=Winter 2015}}</ref> 在他出生的时候,这座城市包括他的父母在内的大多数人讲德语。<ref>Dawson 1997, p. 12</ref>他的父亲是天主教徒,母亲是新教徒,孩子们都是新教徒。库尔特哥德尔的祖先经常活跃在布吕恩的文化生活中。例如,他的祖父约瑟夫哥德尔是那个时代的著名歌手,并且有几年是布伦男子合唱团联盟的成员。<ref>Procházka 2008, pp. 30–34.</ref> |
| | | |
| | | |
| + | 在他的家庭里,年轻的哥德尔因为他贪得无厌的好奇心被称为(“为什么先生”) 。据哥德尔的哥哥鲁道夫说,哥德尔在六七岁的时候得了风湿热,他已经完全康复了,但是在他的余生里,他始终坚信他的心脏受到了永久性的损伤。从四岁开始,哥德尔就患有“频繁发作的健康状况不佳” ,这种状况一直持续到他的一生。<ref>{{Cite book |url=http://plato.stanford.edu/archives/win2015/entries/johann-herbart/ |title=Johann Friedrich Herbart |last=Kim |first=Alan |date=2015-01-01 |editor-last=Zalta |editor-first=Edward N. |edition=Winter 2015 }}</ref> |
| | | |
− | ==Early life and education早期教育==
| |
| | | |
− | Gödel attended the , a Lutheran school in Brünn from 1912 to 1916, and was enrolled in the from 1916 to 1924, excelling with honors in all his subjects, particularly in mathematics, languages and religion. Although Kurt had first excelled in languages, he later became more interested in history and mathematics. His interest in mathematics increased when in 1920 his older brother Rudolf (born 1902) left for Vienna to go to medical school at the University of Vienna. During his teens, Kurt studied Gabelsberger shorthand, Goethe's Theory of Colours and criticisms of Isaac Newton, and the writings of Immanuel Kant. | + | 奥匈帝国在一战中战败,12岁时,哥德尔自动成为了捷克斯洛伐克公民。(根据他的同学的说法,和德国人占主导地位的捷克苏台德区的许多居民一样,“哥德尔一直认为自己是奥地利人,是捷克斯洛伐克的流亡者。”<ref>Dawson 1997, p. 15.</ref>1929年2月,他被授予捷克斯洛伐克国籍,4月获得奥地利国籍。<ref>{{Cite book|url=https://books.google.com/books?id=5ya4A0w62skC&pg=PA37|title=Collected works|last=Gödel, Kurt|publisher=|others=Feferman, Solomon|year=1986|isbn=0195039645|location=Oxford|pages=37|oclc=12371326}}</ref> 1938年纳粹德国吞并奥地利时,哥德尔在32岁时自动成为德国公民。第二次世界大战(1948年)之后,42岁的他成为美国公民。<ref>{{cite web |last1=Balaguer |first1=Mark |title=Kurt Godel |url=https://school.eb.com/levels/high/article/Kurt-G%C3%B6del/37162 |website=Britannica School High |publisher=Encyclopædia Britannica, Inc. |accessdate=3 June 2019}}</ref> |
| | | |
− | 哥德尔于1912年至1916年就读于布吕恩的路德教学校,并于1916年至1924年入学,在所有科目上都表现优异,尤其是在数学、语言和宗教方面。尽管库尔特最初擅长语言,但后来他对历史和数学更感兴趣。1920年,他的哥哥鲁道夫(出生于1902年)离开维也纳去维也纳大学医学院学习,这增加了他对数学的兴趣。在他十几岁的时候,库尔特学习了加贝尔伯格的速记,歌德的色彩理论和对艾萨克 · 牛顿的批评,以及伊曼努尔 · 康德的著作。
| |
| | | |
| + | 哥德尔于1912年至1916年就读于布伦的Evangelische Volksschule,1916年至1924年在Deutsches Staats-Realgymnasium就读,在所有科目中都表现出色,尤其是在数学、语言和宗教方面。尽管库尔特最初擅长语言,但后来他对历史和数学更感兴趣。1920年,他的哥哥鲁道夫 Rudolf(生于1902年)前往维也纳就读于维也纳大学医学院时,更增加了他对数学的兴趣。库尔特学习了加贝尔伯格的速记,歌德的色彩理论和对[[艾萨克·牛顿 Isaac Newton]]的批评,以及[[伊曼努尔·康德 Immanuel Kant]]的著作。 |
| | | |
| | | |
− | ===Childhood童年=== | + | ===在维也纳的学习=== |
| | | |
− | Gödel was born April 28, 1906, in Brünn, [[Austria-Hungary]] (now [[Brno]], [[Czech Republic]]) into the German family of Rudolf Gödel (1874–1929), the manager of a textile factory, and Marianne Gödel ([[née]] Handschuh, 1879–1966).<ref>Dawson 1997, pp. 3–4.</ref> Throughout his life, Gödel would remain close to his mother; their correspondence was frequent and wide-ranging.<ref>{{Cite book|url=http://plato.stanford.edu/archives/win2015/entries/johann-herbart/|title=Johann Friedrich Herbart|last=Kim|first=Alan|date=2015-01-01|editor-last=Zalta|editor-first=Edward N.|edition=Winter 2015}}</ref> At the time of his birth the city had a [[German language|German-speaking]] majority which included his parents.<ref>Dawson 1997, p. 12</ref> His father was Catholic and his mother was Protestant and the children were raised Protestant. The ancestors of Kurt Gödel were often active in Brünn's cultural life. For example, his grandfather Joseph Gödel was a famous singer of that time and for some years a member of the {{lang|de|Brünner Männergesangverein}} (Men's Choral Union of Brünn).<ref>Procházka 2008, pp. 30–34.</ref>
| + | 18岁时,哥德尔与他的兄弟在维也纳会合,进入维也纳大学学习。到那时,他已经掌握了大学水平的数学。虽然最初打算学习理论物理学,但他也参加了数学和哲学课程。在此期间,他采纳了数学实在论的思想。他阅读康德的著作,并与Moritz Schlick、Hans Hahn和Rudolf Carnap一起加入维也纳学派。然后哥德尔学习了数论,但是当他参加了Moritz Schlick 举办的一个研<ref>Gleick, J. (2011) ''[[The Information: A History, a Theory, a Flood]],'' London, Fourth Estate, p. 181.</ref>讨会,研究了Bertrand Russell的书《数学哲学导论 Introduction to Mathematical Philosophy》 ,他开始对数学逻辑感兴趣。根据哥德尔的说法,数理逻辑是“一门先于所有其他科学的科学,它包含了所有科学的基本思想和原则。” |
| | | |
− | 哥德尔于1906年4月28日出生于布吕尼,出生于[[奥地利-匈牙利]](现[[布尔诺]],[[捷克共和国]])的德国家庭,家中有一家纺织厂的经理鲁道夫·哥德尔(1874-1929),玛丽安·哥德尔([[née]]Handschuh,1879-1966年)。<ref>Dawson 1997, pp. 3–4.</ref> 在他的一生中,哥德尔始终与母亲保持着亲密的关系;他们的通信往来频繁而广泛。<ref>{{Cite book|url=http://plato.stanford.edu/archives/win2015/entries/johann-herbart/|title=Johann Friedrich Herbart|last=Kim|first=Alan|date=2015-01-01|editor-last=Zalta|editor-first=Edward N.|edition=Winter 2015}}</ref> 在他出生的时候,这座城市包括他的父母在内的大多数人讲[[德语]。<ref>Dawson 1997, p. 12</ref>他的父亲是天主教徒,母亲是新教徒,孩子们都是新教徒。库尔特哥德尔的祖先经常活跃在布吕恩的文化生活中。例如,他的祖父约瑟夫哥德尔是那个时代的著名歌手,并且有几年是{lang | de | brunner Männergesangverein}(布伦男子合唱团联盟)的成员。<ref>Procházka 2008, pp. 30–34.</ref>
| |
| | | |
− | At the age of 18, Gödel joined his brother in Vienna and entered the University of Vienna. By that time, he had already mastered university-level mathematics. Although initially intending to study theoretical physics, he also attended courses on mathematics and philosophy. During this time, he adopted ideas of mathematical realism. He read Kant's , and participated in the Vienna Circle with Moritz Schlick, Hans Hahn, and Rudolf Carnap. Gödel then studied number theory, but when he took part in a seminar run by Moritz Schlick which studied Bertrand Russell's book Introduction to Mathematical Philosophy, he became interested in mathematical logic. According to Gödel, mathematical logic was "a science prior to all others, which contains the ideas and principles underlying all sciences."
| + | 在博洛尼亚参加David Hilbert特关于数学系统的完整性和一致性的讲座,可能为哥德尔的一生奠定了基础。1928年,Hilbert和Wilhelm Ackermann出版了《数理逻辑的原理 Principles of Mathematical Logic》 ,在一阶逻辑的导言中提出了完备性的问题:“ 一个形式系统的公理是否足以推导出所有系统模型中真实的每个命题?” |
| | | |
− | 18岁时,哥德尔与他的兄弟在维也纳会合,进入维也纳大学学习。到那时,他已经掌握了大学水平的数学。虽然最初打算学习理论物理学,但他也参加了数学和哲学课程。在此期间,他采纳了数学实在论的思想。他阅读康德的著作,并与莫里茨 · 施里克、汉斯 · 哈恩和鲁道夫 · 卡尔纳普一起加入维也纳学派。然后哥德尔学习了数论,但是当他参加了 Moritz Schlick 举办的一个研讨会,研究了伯特兰·罗素的书《数学哲学导论》 ,他开始对数学逻辑感兴趣。根据哥德尔的说法,数理逻辑是“一门先于所有其他科学的科学,它包含了所有科学的基本思想和原则。”
| |
| | | |
| + | 这个问题成为了哥德尔博士论文的主题。1929年,23岁的他在Hans Hahn 的指导下完成了他的博士论文。在其中,他建立了关于一阶谓词演算的同名完备性定理。他在1930年获得博士学位,他的论文(附带一些额外的工作)由维也纳科学院出版。 |
| | | |
| | | |
− | Gödel automatically became a [[Czechoslovakia|Czechoslovak]] citizen at age 12 when the Austro-Hungarian Empire collapsed, following its defeat in the [[World War I]]. (According to his classmate {{lang|cs|Klepetař|italic=no}}, like many residents of the predominantly German {{lang|de|[[Sudetenland|Sudetenländer]]}}, "Gödel considered himself always Austrian and an exile in Czechoslovakia".)<ref>Dawson 1997, p. 15.</ref> In February 1929 he was granted release from his Czechoslovakian citizenship and then, in April, granted Austrian citizenship.<ref>{{Cite book|url=https://books.google.com/books?id=5ya4A0w62skC&pg=PA37|title=Collected works|last=Gödel, Kurt|publisher=|others=Feferman, Solomon|year=1986|isbn=0195039645|location=Oxford|pages=37|oclc=12371326}}</ref> When [[Nazi Germany|Germany]] [[Anschluss|annexed Austria]] in 1938, Gödel automatically became a German citizen at age 32. After [[World War II]] (1948), at the age of 42, he became an American citizen.<ref>{{cite web |last1=Balaguer |first1=Mark |title=Kurt Godel |url=https://school.eb.com/levels/high/article/Kurt-G%C3%B6del/37162 |website=Britannica School High |publisher=Encyclopædia Britannica, Inc. |accessdate=3 June 2019}}</ref>
| + | 1930年,哥德尔参加了9月5日至7日在柯尼斯堡举行的第二届精确科学认识论会议。在这里,他发表了他的<font color="#ff8000"> 不完备性定理</font>。<ref name="Stadler">{{cite book |last1=Stadler |first1=Friedrich |title=The Vienna Circle: Studies in the Origins, Development, and Influence of Logical Empiricism |date=2015 |publisher=Springer |isbn=9783319165615 |url=https://books.google.com/books?id=2rAlCQAAQBAJ&q=Erkenntnis+1930+Konigsberg&pg=PA161 |language=en}}</ref>在那篇文章中,他证明了任何强大到足以描述自然数算术的可计算公理系统(例如,Peano 公理或 Zermelo-Fraenkel 集合论与选择公理) : |
| | | |
− | 奥匈帝国在一战中战败,12岁时,哥德尔自动成为了[捷克斯洛伐克|捷克斯洛伐克]]公民。(根据他的同学{lang| cs | klepata|italic=no}的说法,和德国人占主导地位的{lang de |[[捷克苏台德区]]}}的许多居民一样,“哥德尔一直认为自己是奥地利人,是捷克斯洛伐克的流亡者。”<ref>Dawson 1997, p. 15.</ref>1929年2月,他被授予捷克斯洛伐克国籍,4月获得奥地利国籍。<ref>{{Cite book|url=https://books.google.com/books?id=5ya4A0w62skC&pg=PA37|title=Collected works|last=Gödel, Kurt|publisher=|others=Feferman, Solomon|year=1986|isbn=0195039645|location=Oxford|pages=37|oclc=12371326}}</ref> 1938年[[纳粹德国]][[Anschluss |吞并奥地利]时,哥德尔在32岁时自动成为德国公民。[第二次世界大战](1948年)之后,42岁的他成为美国公民。<ref>{{cite web |last1=Balaguer |first1=Mark |title=Kurt Godel |url=https://school.eb.com/levels/high/article/Kurt-G%C3%B6del/37162 |website=Britannica School High |publisher=Encyclopædia Britannica, Inc. |accessdate=3 June 2019}}</ref>]][[Index.php?title=库尔特·哥德尔 Kurt Gödel#cite%20note-17|<span class="mw-reflink-text">[17]</span>]][[Index.php?title=库尔特·哥德尔 Kurt Gödel#cite%20note-17|<span class="mw-reflink-text">[17]</span>]]
| |
| | | |
− | Attending a lecture by David Hilbert in Bologna on completeness and consistency of mathematical systems may have set Gödel's life course. In 1928, Hilbert and Wilhelm Ackermann published (Principles of Mathematical Logic), an introduction to first-order logic in which the problem of completeness was posed: Are the axioms of a formal system sufficient to derive every statement that is true in all models of the system?
| + | If a (logical or axiomatic formal) system is consistent, it cannot be complete. |
| | | |
− | 在博洛尼亚参加大卫 · 希尔伯特关于数学系统的完整性和一致性的讲座,可能为哥德尔的一生奠定了基础。1928年,希尔伯特和威廉·阿克曼出版了《数理逻辑的原理》 ,在一阶逻辑的导言中提出了完备性的问题: 一个形式系统的公理是否足以推导出所有系统模型中真实的每个命题?
| + | 如果一个(逻辑或公理化的正式)系统是一致的,那么它就不能是完整的。 |
| | | |
| | | |
| + | ==职业生涯== |
| | | |
− | In his family, young Kurt was known as {{lang|de|Herr Warum}} ("Mr. Why") because of his insatiable curiosity. According to his brother Rudolf, at the age of six or seven Kurt suffered from rheumatic fever; he completely recovered, but for the rest of his life he remained convinced that his heart had suffered permanent damage. Beginning at age four, Gödel suffered from "frequent episodes of poor health", which would continue for his entire life.<ref>{{Cite book |url=http://plato.stanford.edu/archives/win2015/entries/johann-herbart/ |title=Johann Friedrich Herbart |last=Kim |first=Alan |date=2015-01-01 |editor-last=Zalta |editor-first=Edward N. |edition=Winter 2015 }}</ref>
| + | 1932年,哥德尔在获得了学位,1933年,他在那里成为一名无薪讲师。1933年,Adolf Hitler在德国掌权,随后几年,纳粹在奥地利和维也纳的数学家中的影响力不断上升。1936年6月,Moritz Schlick的研讨会引起了哥德尔对逻辑学的兴趣,却被他以前的学生Johann Nelböck暗杀。这对哥德尔引发了“一场严重的神经危机”。他出现了偏执症状,包括害怕中毒,并因神经疾病在疗养院度过了几个月。 |
| | | |
− | <nowiki>在他的家族中,年轻的库尔特因其永不满足的好奇心而被称为{lang | de | Herr Warum}}(“为什么先生”)。据他的兄弟鲁道夫说,库尔特在六七岁的时候患了[风湿热];他完全康复了,但在他的余生中,他仍然坚信他的心脏受到了永久性的损害。从四岁开始,哥德尔就饱受“频繁发作的健康不佳”之苦,这种情况持续了一生。</nowiki><ref>{{Cite book |url=http://plato.stanford.edu/archives/win2015/entries/johann-herbart/ |title=Johann Friedrich Herbart |last=Kim |first=Alan |date=2015-01-01 |editor-last=Zalta |editor-first=Edward N. |edition=Winter 2015 }}</ref>
| |
| | | |
− | This problem became the topic that Gödel chose for his doctoral work. In 1929, at the age of 23, he completed his doctoral dissertation under Hans Hahn's supervision. In it, he established his eponymous completeness theorem regarding the first-order predicate calculus. He was awarded his doctorate in 1930, and his thesis (accompanied by some additional work) was published by the Vienna Academy of Science.
| + | 1933年,哥德尔第一次来到美国,在那里他遇到了[[阿尔伯特·爱因斯坦 Albert Einstein]],爱因斯坦成了他的好朋友。他在美国数学学会的年会上发表了演讲。在这一年里,哥德尔还发展了可计算性和递归函数的概念,以至于他能够提出一个关于一般递归函数和真理概念的演讲。这项工作是在数论中发展起来的,使用了哥德尔编码 Gödel numbering。 |
| | | |
− | 这个问题成为了哥德尔博士论文的主题。1929年,23岁的他在 Hans Hahn 的指导下完成了他的博士论文。在其中,他建立了关于一阶谓词演算的同名完备性定理。他在1930年获得博士学位,他的论文(附带一些额外的工作)由维也纳科学院出版。
| |
| | | |
| + | 1934年,哥德尔在新泽西州普林斯顿的高级研究所(IAS)做了一系列演讲,题目是关于正式数学系统的不可判定命题。斯蒂芬·克莱恩 Stephen Kleene刚刚在普林斯顿大学完成了他的博士学位,他记下了这些讲座的笔记,这些讲座随后被出版。 |
| | | |
| | | |
− | Gödel attended the {{lang|de|Evangelische Volksschule}}, a Lutheran school in Brünn from 1912 to 1916, and was enrolled in the {{lang|de|Deutsches Staats-Realgymnasium}} from 1916 to 1924, excelling with honors in all his subjects, particularly in mathematics, languages and religion. Although Kurt had first excelled in languages, he later became more interested in history and mathematics. His interest in mathematics increased when in 1920 his older brother Rudolf (born 1902) left for Vienna to go to medical school at the University of Vienna. During his teens, Kurt studied Gabelsberger shorthand, Goethe's ''Theory of Colours'' and criticisms of Isaac Newton, and the writings of Immanuel Kant.
| + | 哥德尔在1935年秋天再次参观了国际会计准则。旅行和艰苦的工作使他筋疲力尽,第二年他休息一下,从抑郁症中恢复过来。他于1937年重返教学岗位。在此期间,他致力于证明选择公理和连续统假设公理的一致性; 他继续表明,这些假设不能从集合论公理系统的共同体系中被证伪。 |
− | | |
− | 哥德尔于1912年至1916年就读于布伦的路德教会学校{{lang|de|Evangelische Volksschule}},1916年至1924年在 {{lang|de|Deutsches Staats-Realgymnasium}}就读,在所有科目中都表现出色,尤其是在数学、语言和宗教方面。尽管库尔特最初擅长语言,但后来他对历史和数学更感兴趣。1920年,他的哥哥鲁道夫(生于1902年)前往[维也纳就读于[[维也纳大学]]医学院时,更增加了他对数学的兴趣。在他十几岁的时候,库尔特学习了[[Gabelberger速记]],[[Johann Wolfgang von Goethe | Goethe]]的“[[色彩理论(书)| Theory of Colours]]”和对[[艾萨克牛顿]]的批评,以及[[康德Immanuel Kant]]的著作。
| |
− | | |
− | ===Studying in Vienna在维也纳的学习===
| |
− | | |
− | At the age of 18, Gödel joined his brother in Vienna and entered the University of Vienna. By that time, he had already mastered university-level mathematics.<ref>Dawson 1997, p. 24.</ref> Although initially intending to study [[theoretical physics]], he also attended courses on mathematics and philosophy. During this time, he adopted ideas of [[mathematical realism]]. He read [[Immanuel Kant|Kant]]'s {{lang|de|[[Metaphysical Foundations of Natural Science|Metaphysische Anfangsgründe der Naturwissenschaft]]|italic=yes}}, and participated in the [[Vienna Circle]] with [[Moritz Schlick]], [[Hans Hahn (mathematician)|Hans Hahn]], and [[Rudolf Carnap]]. Gödel then studied [[number theory]], but when he took part in a seminar run by [[Moritz Schlick]] which studied [[Bertrand Russell]]'s book ''Introduction to Mathematical Philosophy'', he became interested in [[mathematical logic]]. According to Gödel, mathematical logic was "a science prior to all others, which contains the ideas and principles underlying all sciences."<ref>Gleick, J. (2011) ''[[The Information: A History, a Theory, a Flood]],'' London, Fourth Estate, p. 181.</ref>
| |
− | | |
− | 18岁那年,哥德尔与哥哥在维也纳会合,进入维也纳大学。那时,他已经掌握了大学水平的数学。<ref>Dawson 1997, p. 24.</ref> 虽然最初打算学习[[理论物理]],但他也参加了数学和哲学课程。在此期间,他采纳了[[数学现实主义]的思想。他读了[[Immanuel Kant | Kant]]的{lang | de |[[形而上学自然科学基础| Anfangsgründe der Naturwissenschaft]]| italic=yes},并与[[Moritz Schlick]]、[[Hans Hahn(数学家)| Hans Hahn]]和[[Rudolf Carnap]]一起参与了[[维也纳圈]]。哥德尔后来学习了[[数论]],但当他参加了一个由[[Moritz Schlick]]举办的研究[[Bertrand Russell]]的书《数学哲学导论》的研讨会时,他对[[数学逻辑]]产生了兴趣。按照哥德尔的说法,数理逻辑是“一门先于所有其他学科的科学,它包含了所有科学背后的思想和原则。”<ref>Gleick, J. (2011) ''[[The Information: A History, a Theory, a Flood]],'' London, Fourth Estate, p. 181.</ref>
| |
− | | |
− | Attending a lecture by [[David Hilbert]] in [[Bologna]] on completeness and consistency of mathematical systems may have set Gödel's life course. In 1928, Hilbert and [[Wilhelm Ackermann]] published {{lang|de|Grundzüge der theoretischen Logik|italic=yes}} (''[[Principles of Mathematical Logic]]''), an introduction to [[first-order logic]] in which the problem of completeness was posed: ''Are the axioms of a formal system sufficient to derive every statement that is true in all models of the system?''
| |
− | | |
− | 参加[[davidhilbert]]在[[Bologna]]举办的一场关于数学系统的完整性和一致性的讲座,可能已经为哥德尔的人生道路定下了伏笔。1928年,希尔伯特和[[威廉·阿克曼]]出版了{lang | de | Grundzüge der theoretischen Logik | italic=yes}}('[[数学逻辑原理]]',[[一阶逻辑]]的导论,其中提出了完备性问题:“一个形式系统的公理是否足以导出系统所有模型中的每一个正确的陈述?”
| |
− | | |
− | In 1930 Gödel attended the Second Conference on the Epistemology of the Exact Sciences, held in Königsberg, 5–7 September. Here he delivered his incompleteness theorems.
| |
− | | |
− | 1930年,哥德尔参加了9月5日至7日在柯尼斯堡举行的第二届精确科学认识论会议。在这里,他发表了他的<font color="#ff8000"> 不完备性定理</font>。
| |
− | | |
− | | |
− | | |
− | This problem became the topic that Gödel chose for his doctoral work. In 1929, at the age of 23, he completed his doctoral [[dissertation]] under Hans Hahn's supervision. In it, he established his eponymous [[Gödel's completeness theorem|completeness theorem]] regarding the [[first-order predicate calculus]]. He was awarded his doctorate in 1930, and his thesis (accompanied by some additional work) was published by the [[Vienna Academy of Science]].
| |
− | | |
− | 这个问题成为哥德尔博士论文的主题。1929年,23岁的他在汉斯·哈恩的指导下完成了他的博士论文。在这篇文章中,他建立了他关于[[一阶谓词演算]]的同名[[Gödel完备性定理|完备性定理]]。1930年,他被授予博士学位,他的论文(附有一些额外的工作)由[[维也纳科学院]]出版。
| |
− | | |
− | Gödel published his incompleteness theorems in und verwandter Systeme}} (called in English "On Formally Undecidable Propositions of and Related Systems"). In that article, he proved for any computable axiomatic system that is powerful enough to describe the arithmetic of the natural numbers (e.g., the Peano axioms or Zermelo–Fraenkel set theory with the axiom of choice), that:
| |
| | | |
− | 哥德尔在 und verwandter Systeme }(英文名为“论及相关系统的正式不可判定命题”)中发表了他的<font color="#ff8000"> 不完备性定理</font>。在那篇文章中,他证明了任何强大到足以描述自然数算术的可计算公理系统(例如,Peano 公理或 Zermelo-Fraenkel 集合论与选择公理) :
| |
| | | |
| | | |
− | | + | ===不完全性定理=== |
− | If a (logical or axiomatic formal) system is consistent, it cannot be complete.
| |
− | | |
− | 如果一个(逻辑或公理化的正式)系统是一致的,那么它就不能是完整的。
| |
− | | |
− | ==Career职业生涯== | |
− | | |
− | The consistency of axioms cannot be proved within their own system.
| |
− | | |
− | 公理的一致性不能在它们自己的体系中得到证明。
| |
− | | |
− | | |
− | | |
− | These theorems ended a half-century of attempts, beginning with the work of Frege and culminating in and Hilbert's formalism, to find a set of axioms sufficient for all mathematics.
| |
− | | |
− | 这些定理结束了半个世纪的努力,从弗雷格的工作开始,到希尔伯特的形式主义,试图找到一套足以适用于所有数学的公理。
| |
− | | |
− | ===Incompleteness theorem不完全性定理===
| |
| | | |
| {{quote|Kurt Gödel's achievement in modern logic is singular and monumental—indeed it is more than a monument, it is a landmark which will remain visible far in space and time. ... The subject of logic has certainly completely changed its nature and possibilities with Gödel's achievement.|[[John von Neumann]]<ref>{{Cite journal |last=Halmos |first=P.R. |title=The Legend of von Neumann |journal=The American Mathematical Monthly |volume=80 |number=4 |date=April 1973 |pages=382–94|doi=10.1080/00029890.1973.11993293 }}</ref>}} | | {{quote|Kurt Gödel's achievement in modern logic is singular and monumental—indeed it is more than a monument, it is a landmark which will remain visible far in space and time. ... The subject of logic has certainly completely changed its nature and possibilities with Gödel's achievement.|[[John von Neumann]]<ref>{{Cite journal |last=Halmos |first=P.R. |title=The Legend of von Neumann |journal=The American Mathematical Monthly |volume=80 |number=4 |date=April 1973 |pages=382–94|doi=10.1080/00029890.1973.11993293 }}</ref>}} |
第158行: |
第105行: |
| {{引述|库尔特·哥德尔在现代逻辑方面的成就是独一无二的和具有纪念意义的——事实上它不仅仅是一座纪念碑,它是一座里程碑,它将在遥远的时空中保持可见。。。随着哥德尔的成就,逻辑学的学科无疑已经完全改变了它的性质和可能性[[John von Neumann]]<ref>{{Cite journal |last=Halmos |first=P.R. |title=The Legend of von Neumann |journal=The American Mathematical Monthly |volume=80 |number=4 |date=April 1973 |pages=382–94|doi=10.1080/00029890.1973.11993293 }}</ref>}} | | {{引述|库尔特·哥德尔在现代逻辑方面的成就是独一无二的和具有纪念意义的——事实上它不仅仅是一座纪念碑,它是一座里程碑,它将在遥远的时空中保持可见。。。随着哥德尔的成就,逻辑学的学科无疑已经完全改变了它的性质和可能性[[John von Neumann]]<ref>{{Cite journal |last=Halmos |first=P.R. |title=The Legend of von Neumann |journal=The American Mathematical Monthly |volume=80 |number=4 |date=April 1973 |pages=382–94|doi=10.1080/00029890.1973.11993293 }}</ref>}} |
| | | |
− |
| |
− | In hindsight, the basic idea at the heart of the incompleteness theorem is rather simple. Gödel essentially constructed a formula that claims that it is unprovable in a given formal system. If it were provable, it would be false.
| |
− |
| |
− | 事后看来,<font color="#ff8000"> 不完全性定理</font>的核心基本思想相当简单。哥德尔实质上构造了一个公式,声称它在给定的形式系统中是不可证明的。如果可以证明,那就是错误的。
| |
− |
| |
− |
| |
− |
| |
− | Thus there will always be at least one true but unprovable statement.
| |
− |
| |
− | 因此,总会有至少一个真实但无法证明的陈述。
| |
− |
| |
− | In 1930 Gödel attended the [[Second Conference on the Epistemology of the Exact Sciences]], held in [[Königsberg]], 5–7 September. Here he delivered his [[Gödel's incompleteness theorems|incompleteness theorems]].<ref name="Stadler">{{cite book |last1=Stadler |first1=Friedrich |title=The Vienna Circle: Studies in the Origins, Development, and Influence of Logical Empiricism |date=2015 |publisher=Springer |isbn=9783319165615 |url=https://books.google.com/books?id=2rAlCQAAQBAJ&q=Erkenntnis+1930+Konigsberg&pg=PA161 |language=en}}</ref>
| |
− |
| |
− | 1930年,哥德尔出席了9月5日至7日在[[Königsberg]]举行的第二届精确科学认识论会议。在这里他发表了他的[[哥德尔不完全性定理|不完全性定理]]。<ref name="Stadler">{{cite book |last1=Stadler |first1=Friedrich |title=The Vienna Circle: Studies in the Origins, Development, and Influence of Logical Empiricism |date=2015 |publisher=Springer |isbn=9783319165615 |url=https://books.google.com/books?id=2rAlCQAAQBAJ&q=Erkenntnis+1930+Konigsberg&pg=PA161 |language=en}}</ref>
| |
− |
| |
− | That is, for any computably enumerable set of axioms for arithmetic (that is, a set that can in principle be printed out by an idealized computer with unlimited resources), there is a formula that is true of arithmetic, but which is not provable in that system.
| |
− |
| |
− | 也就是说,对于任何可计算枚举的算术公理集(也就是说,原则上可以由拥有无限资源的理想计算机打印出来的公理集) ,有一个算术公式是正确的,但在该系统中无法证明。
| |
− |
| |
− |
| |
− |
| |
− | To make this precise, however, Gödel needed to produce a method to encode (as natural numbers) statements, proofs, and the concept of provability; he did this using a process known as Gödel numbering.
| |
− |
| |
− | 然而,要做到这一点,哥德尔需要产生一种方法来编码(自然数)的陈述、证明、和可证明的概念; 他这样做使用的过程称为<font color="#ff8000"> 哥德尔编码Gödel numbering</font>。
| |
| | | |
| Gödel published his incompleteness theorems in {{lang|de|Über formal unentscheidbare Sätze der {{lang|la|Principia Mathematica}} und verwandter Systeme}} (called in English "[[On Formally Undecidable Propositions of Principia Mathematica and Related Systems|On Formally Undecidable Propositions of {{lang|la|Principia Mathematica|nocat=y}} and Related Systems]]"). In that article, he proved for any [[recursion theory|computable]] [[axiomatic system]] that is powerful enough to describe the arithmetic of the [[natural numbers]] (e.g., the [[Peano axioms]] or [[ZFC|Zermelo–Fraenkel set theory with the axiom of choice]]), that: | | Gödel published his incompleteness theorems in {{lang|de|Über formal unentscheidbare Sätze der {{lang|la|Principia Mathematica}} und verwandter Systeme}} (called in English "[[On Formally Undecidable Propositions of Principia Mathematica and Related Systems|On Formally Undecidable Propositions of {{lang|la|Principia Mathematica|nocat=y}} and Related Systems]]"). In that article, he proved for any [[recursion theory|computable]] [[axiomatic system]] that is powerful enough to describe the arithmetic of the [[natural numbers]] (e.g., the [[Peano axioms]] or [[ZFC|Zermelo–Fraenkel set theory with the axiom of choice]]), that: |
第187行: |
第110行: |
| 哥德尔把他的不完全性定理发表在{{lang|de|Über formal unentscheidbare Sätze der {{lang|la|Principia Mathematica}} und verwandter Systeme}} (英文名为“[[关于数学原理和相关系统的形式不可判定命题{lang | la | Principia Mathematica | nocat=y}}和相关系统的形式不可判定命题]”)。在这篇文章中,他证明了任何强大到足以描述[[自然数]]算术的[[递归理论|可计算]][[公理系统](例如,[[Peano公理]]或[[ZFC | Zermelo–Fraenkel集理论与选择公理]]): | | 哥德尔把他的不完全性定理发表在{{lang|de|Über formal unentscheidbare Sätze der {{lang|la|Principia Mathematica}} und verwandter Systeme}} (英文名为“[[关于数学原理和相关系统的形式不可判定命题{lang | la | Principia Mathematica | nocat=y}}和相关系统的形式不可判定命题]”)。在这篇文章中,他证明了任何强大到足以描述[[自然数]]算术的[[递归理论|可计算]][[公理系统](例如,[[Peano公理]]或[[ZFC | Zermelo–Fraenkel集理论与选择公理]]): |
| | | |
− | # If a (logical or axiomatic formal) [[formal system|system]] is [[consistency proof|consistent]], it cannot be [[completeness (logic)|complete]].
| + | 1. 如果一个(逻辑或公理形式)形式系统是一致性的,它的逻辑就不可能是完整的。 |
| | | |
− | #如果一个(逻辑或公理形式)[[形式系统|系统]]是[[证明一致性|一致性]]的,它就不可能是[[完整(逻辑)|完整性]]的。 | + | 在他1932年的两页论文中,哥德尔反驳了直觉主义逻辑的有限值性。在证明中,他隐含地使用了后来被称为的<font color="#ff8000"> 哥德尔-达米特中间逻辑 Gödel–Dummett intermediate logic</font>(或哥德尔模糊逻辑)。 |
| | | |
− | In his two-page paper (1932) Gödel refuted the finite-valuedness of intuitionistic logic. In the proof, he implicitly used what has later become known as Gödel–Dummett intermediate logic (or Gödel fuzzy logic).
| |
| | | |
− | 在他1932年的两页论文中,哥德尔反驳了直觉主义逻辑的有限值性。在证明中,他隐含地使用了后来被称为的<font color="#ff8000"> 哥德尔-达米特中间逻辑Gödel–Dummett intermediate logic</font>(或哥德尔模糊逻辑)。
| + | 2. 公理的一致性不能在它们自己的系统内得到证明。 |
| | | |
− | # The consistency of [[axiom]]s cannot be proved within their own [[axiomatic system|system]].
| |
| | | |
− | #[[公理]]的一致性不能在它们自己的[[公理系统|系统]]内得到证明。
| |
| | | |
− | These theorems ended a half-century of attempts, beginning with the work of [[Frege]] and culminating in {{lang|la|[[Principia Mathematica]]}} and [[philosophy of mathematics#Formalism|Hilbert's formalism]], to find a set of axioms sufficient for all mathematics.
| + | 事后看来,不完全性定理的核心思想相当简单。哥德尔基本上构造了一个公式,证明它在给定的形式系统中是不可证明的。如果这是可以证明的,那就错了。 |
− | | |
− | 这些定理结束了半个世纪的努力,从[[Frege]]的工作开始,直到{{lang| la |[[数学原理]]}和[[数学哲学#形式主义|希尔伯特形式主义]],都在试图找到一套足以适用于所有数学的公理。
| |
− | | |
− | Gödel earned his habilitation at Vienna in 1932, and in 1933 he became a (unpaid lecturer) there. In 1933 Adolf Hitler came to power in Germany, and over the following years the Nazis rose in influence in Austria, and among Vienna's mathematicians. In June 1936, Moritz Schlick, whose seminar had aroused Gödel's interest in logic, was assassinated by one of his former students, Johann Nelböck. This triggered "a severe nervous crisis" in Gödel. He developed paranoid symptoms, including a fear of being poisoned, and spent several months in a sanitarium for nervous diseases.
| |
− | | |
− | 1932年,哥德尔在维也纳获得了学位,1933年,他在那里成为一名(无薪讲师)。1933年,阿道夫 · 希特勒在德国掌权,随后几年,纳粹在奥地利和维也纳的数学家中的影响力不断上升。1936年6月,莫里茨 · 施里克的研讨会引起了哥德尔对逻辑学的兴趣,却被他以前的学生约翰 · 内尔博克暗杀。这对哥德尔引发了“一场严重的神经危机”。他出现了偏执症状,包括害怕中毒,并因神经疾病在疗养院度过了几个月。
| |
− | | |
− | In hindsight, the basic idea at the heart of the incompleteness theorem is rather simple. Gödel essentially constructed a formula that claims that it is unprovable in a given formal system. If it were provable, it would be false.
| |
− | | |
− | Thus there will always be at least one true but unprovable statement.
| |
| | | |
− | 事后看来,不完全性定理的核心思想相当简单。哥德尔基本上构造了一个公式,证明它在给定的形式系统中是不可证明的。如果这是可以证明的,那就错了。
| |
| | | |
| 因此,总会有至少一个真实但无法证明的陈述。 | | 因此,总会有至少一个真实但无法证明的陈述。 |
| | | |
− | In 1933, Gödel first traveled to the U.S., where he met Albert Einstein, who became a good friend. He delivered an address to the annual meeting of the American Mathematical Society. During this year, Gödel also developed the ideas of computability and recursive functions to the point where he was able to present a lecture on general recursive functions and the concept of truth. This work was developed in number theory, using Gödel numbering.
| |
− |
| |
− | 1933年,哥德尔第一次来到美国,在那里他遇到了阿尔伯特 · 爱因斯坦,爱因斯坦成了他的好朋友。他在美国数学学会的年会上发表了演讲。在这一年里,哥德尔还发展了可计算性和递归函数的概念,以至于他能够提出一个关于一般递归函数和真理概念的演讲。这项工作是在数论中发展起来的,使用了<font color="#ff8000"> 哥德尔编码</font>。
| |
− |
| |
− | That is, for any [[computably enumerable]] set of axioms for arithmetic (that is, a set that can in principle be printed out by an idealized computer with unlimited resources), there is a formula that is true of arithmetic, but which is not provable in that system.
| |
− |
| |
− | To make this precise, however, Gödel needed to produce a method to encode (as natural numbers) statements, proofs, and the concept of provability; he did this using a process known as [[Gödel number]]ing.
| |
| | | |
| 也就是说,对于任何[[可计算可枚举]]的算术公理集(也就是说,一个原则上可以由一台具有无限资源的理想计算机打印出来的集合),都有一个公式是正确的,但在该系统中是不可证明的。 | | 也就是说,对于任何[[可计算可枚举]]的算术公理集(也就是说,一个原则上可以由一台具有无限资源的理想计算机打印出来的集合),都有一个公式是正确的,但在该系统中是不可证明的。 |
| | | |
− | 然而,为了精确起见,哥德尔需要产生一种方法来编码(作为自然数)语句、证明和可证明性的概念;他使用一种称为[[哥德尔编码Gödel number]]ing的过程来实现这一点。
| |
| | | |
− | In 1934, Gödel gave a series of lectures at the Institute for Advanced Study (IAS) in Princeton, New Jersey, entitled On undecidable propositions of formal mathematical systems. Stephen Kleene, who had just completed his PhD at Princeton, took notes of these lectures that have been subsequently published.
| + | 然而,为了精确起见,哥德尔需要产生一种方法来编码(作为自然数)语句、证明和可证明性的概念;他使用一种哥德尔编码来实现这一点。 |
| | | |
− | 1934年,哥德尔在新泽西州普林斯顿的高级研究所(IAS)做了一系列演讲,题目是关于正式数学系统的不可判定命题。斯蒂芬 · 克莱恩(Stephen Kleene)刚刚在普林斯顿大学完成了他的博士学位,他记下了这些讲座的笔记,这些讲座随后被出版。
| + | The consistency of axioms cannot be proved within their own system. |
| | | |
| + | 公理的一致性不能在它们自己的体系中得到证明。 |
| | | |
| | | |
− | In his two-page paper {{lang|de|Zum intuitionistischen Aussagenkalkül}} (1932) Gödel refuted the finite-valuedness of [[intuitionistic logic]]. In the proof, he implicitly used what has later become known as [[intermediate logic|Gödel–Dummett intermediate logic]] (or [[t-norm fuzzy logic|Gödel fuzzy logic]]).
| + | 这些定理结束了半个世纪的努力,从Frege的工作开始,到Hilbert的形式主义,他们都试图找到一套足以适用于所有数学的公理。 |
− | | |
− | 哥德尔在两页纸的论文{lang| de | Zum直觉主义者ischen Aussagenkalkül}(1932)中驳斥了[[直觉逻辑]]的有限值性。在证明中,他隐含地使用了后来被称为的[[中间逻辑|哥德尔-达米特中间逻辑]](或[[t-范数模糊逻辑|哥德尔模糊逻辑]])。
| |
− | | |
− | Gödel visited the IAS again in the autumn of 1935. The travelling and the hard work had exhausted him and the next year he took a break to recover from a depressive episode. He returned to teaching in 1937. During this time, he worked on the proof of consistency of the axiom of choice and of the continuum hypothesis; he went on to show that these hypotheses cannot be disproved from the common system of axioms of set theory.
| |
| | | |
− | 哥德尔在1935年秋天再次参观了国际会计准则。旅行和艰苦的工作使他筋疲力尽,第二年他休息一下,从抑郁症中恢复过来。他于1937年重返教学岗位。在此期间,他致力于证明选择公理和连续统假设公理的一致性; 他继续表明,这些假设不能从集合论公理系统的共同体系中被证伪。
| |
− |
| |
− |
| |
− |
| |
− | ===Mid-1930s: further work and U.S. visits20世纪30年代中期:进一步的工作和美国访问===
| |
− |
| |
− | He married (née Porkert, 1899–1981), whom he had known for over 10 years, on September 20, 1938. Gödel's parents had opposed their relationship because she was a divorced dancer, six years older than he was.
| |
− |
| |
− | 他于1938年9月20日与认识了10多年的波克特结婚。哥德尔的父母反对他们的关系,因为她是一个离异的舞蹈演员,比哥德尔大六岁。
| |
| | | |
| + | ===20世纪30年代中期:进一步的工作和美国访问=== |
| Gödel earned his [[habilitation]] at Vienna in 1932, and in 1933 he became a {{lang|de|[[Privatdozent]]}} (unpaid lecturer) there. In 1933 [[Adolf Hitler]] came to power in Germany, and over the following years the Nazis rose in influence in Austria, and among Vienna's mathematicians. In June 1936, [[Moritz Schlick]], whose seminar had aroused Gödel's interest in logic, was assassinated by one of his former students, [[Johann Nelböck]]. This triggered "a severe nervous crisis" in Gödel.<ref name=Casti2001>{{Cite book |last1=Casti |first1=John L. |last2=Depauli |first2=Werner |year=2001 |title=Gödel : a life of logic |doi=10.1287/moor.1050.0169 |isbn=978-0-7382-0518-2 |location=Cambridge, Mass. |publisher=Basic Books |journal=Mathematics of Operations Research |volume=31 |page=147 |last3=Koppe |first3=Matthias |last4=Weismantel |first4=Robert |arxiv=math/0410111 |s2cid=9054486 }}. From p. 80, which quotes Rudolf Gödel, Kurt's brother and a medical doctor. The words "a severe nervous crisis", and the judgement that the Schlick assassination was its trigger, are from the Rudolf Gödel quote. Rudolf knew Kurt well in those years.</ref> He developed paranoid symptoms, including a fear of being poisoned, and spent several months in a sanitarium for nervous diseases.<ref>Dawson 1997, pp. 110–12</ref> | | Gödel earned his [[habilitation]] at Vienna in 1932, and in 1933 he became a {{lang|de|[[Privatdozent]]}} (unpaid lecturer) there. In 1933 [[Adolf Hitler]] came to power in Germany, and over the following years the Nazis rose in influence in Austria, and among Vienna's mathematicians. In June 1936, [[Moritz Schlick]], whose seminar had aroused Gödel's interest in logic, was assassinated by one of his former students, [[Johann Nelböck]]. This triggered "a severe nervous crisis" in Gödel.<ref name=Casti2001>{{Cite book |last1=Casti |first1=John L. |last2=Depauli |first2=Werner |year=2001 |title=Gödel : a life of logic |doi=10.1287/moor.1050.0169 |isbn=978-0-7382-0518-2 |location=Cambridge, Mass. |publisher=Basic Books |journal=Mathematics of Operations Research |volume=31 |page=147 |last3=Koppe |first3=Matthias |last4=Weismantel |first4=Robert |arxiv=math/0410111 |s2cid=9054486 }}. From p. 80, which quotes Rudolf Gödel, Kurt's brother and a medical doctor. The words "a severe nervous crisis", and the judgement that the Schlick assassination was its trigger, are from the Rudolf Gödel quote. Rudolf knew Kurt well in those years.</ref> He developed paranoid symptoms, including a fear of being poisoned, and spent several months in a sanitarium for nervous diseases.<ref>Dawson 1997, pp. 110–12</ref> |
| | | |
| 1932年,哥德尔在维也纳为人熟知(获得了[[习惯化]]),1933年他成为了{lang | de |[[Privatdozent]]}}(无薪讲师)。1933年[[阿道夫希特勒]在德国掌权,在接下来的几年里,纳粹在奥地利和维也纳数学家中的影响力不断上升。1936年6月,[[Moritz Schlick]]的研讨会引起了哥德尔对逻辑学的兴趣,他被他的一个前学生[[Johann Nelböck]]暗杀。这在哥德尔引发了“严重的神经危机”。<ref name="Casti2001">{{Cite book |last1=Casti |first1=John L. |last2=Depauli |first2=Werner |year=2001 |title=Gödel : a life of logic |doi=10.1287/moor.1050.0169 |isbn=978-0-7382-0518-2 |location=Cambridge, Mass. |publisher=Basic Books |journal=Mathematics of Operations Research |volume=31 |page=147 |last3=Koppe |first3=Matthias |last4=Weismantel |first4=Robert |arxiv=math/0410111 |s2cid=9054486 }}摘自第80页,其中引用了库尔特的哥哥、医生鲁道夫·哥德尔的话。这句话引述了索尔夫的话:“这是一次严重的刺杀,这是鲁德的一次严重的刺杀。”。鲁道夫在那几年很了解库尔特。</ref>他出现了偏执症状,包括害怕中毒,并在一所治疗神经疾病的疗养院呆了几个月。<ref>Dawson 1997, pp. 110–12</ref> | | 1932年,哥德尔在维也纳为人熟知(获得了[[习惯化]]),1933年他成为了{lang | de |[[Privatdozent]]}}(无薪讲师)。1933年[[阿道夫希特勒]在德国掌权,在接下来的几年里,纳粹在奥地利和维也纳数学家中的影响力不断上升。1936年6月,[[Moritz Schlick]]的研讨会引起了哥德尔对逻辑学的兴趣,他被他的一个前学生[[Johann Nelböck]]暗杀。这在哥德尔引发了“严重的神经危机”。<ref name="Casti2001">{{Cite book |last1=Casti |first1=John L. |last2=Depauli |first2=Werner |year=2001 |title=Gödel : a life of logic |doi=10.1287/moor.1050.0169 |isbn=978-0-7382-0518-2 |location=Cambridge, Mass. |publisher=Basic Books |journal=Mathematics of Operations Research |volume=31 |page=147 |last3=Koppe |first3=Matthias |last4=Weismantel |first4=Robert |arxiv=math/0410111 |s2cid=9054486 }}摘自第80页,其中引用了库尔特的哥哥、医生鲁道夫·哥德尔的话。这句话引述了索尔夫的话:“这是一次严重的刺杀,这是鲁德的一次严重的刺杀。”。鲁道夫在那几年很了解库尔特。</ref>他出现了偏执症状,包括害怕中毒,并在一所治疗神经疾病的疗养院呆了几个月。<ref>Dawson 1997, pp. 110–12</ref> |
| | | |
− | Subsequently, he left for another visit to the United States, spending the autumn of 1938 at the IAS and publishing Consistency of the axiom of choice and of the generalized continuum-hypothesis with the axioms of set theory, a classic of modern mathematics. In that work he introduced the constructible universe, a model of set theory in which the only sets that exist are those that can be constructed from simpler sets. Gödel showed that both the axiom of choice (AC) and the generalized continuum hypothesis (GCH) are true in the constructible universe, and therefore must be consistent with the Zermelo–Fraenkel axioms for set theory (ZF). This result has had considerable consequences for working mathematicians, as it means they can assume the axiom of choice when proving the Hahn–Banach theorem. Paul Cohen later constructed a model of ZF in which AC and GCH are false; together these proofs mean that AC and GCH are independent of the ZF axioms for set theory.
| |
| | | |
| 随后,他又前往美国,在国际会计准则所度过了1938年秋天,并出版了选择公理和广义连续统一体假设与集合论公理的一致性,集合论是现代数学的经典。在这部著作中,他提出了可构造的宇宙,这是一个集合论模型,在这个模型中,只有那些可以由简单集合构造出来的集合存在。哥德尔指出,选择公理(AC)和广义连续统假设公理(GCH)在可构造的宇宙中都是正确的,因此必须与集合论的 Zermelo-Fraenkel 公理(ZF)一致。这个结果对从事数学工作的人来说有相当大的影响,因为这意味着他们在证明哈恩-巴纳赫定理时可以假定选择公理。保罗 · 科恩后来构造了一个 ZF 模型,其中 AC 和 GCH 是假的; 这些证明一起意味着 AC 和 GCH 是独立于集合论的 ZF 公理的。 | | 随后,他又前往美国,在国际会计准则所度过了1938年秋天,并出版了选择公理和广义连续统一体假设与集合论公理的一致性,集合论是现代数学的经典。在这部著作中,他提出了可构造的宇宙,这是一个集合论模型,在这个模型中,只有那些可以由简单集合构造出来的集合存在。哥德尔指出,选择公理(AC)和广义连续统假设公理(GCH)在可构造的宇宙中都是正确的,因此必须与集合论的 Zermelo-Fraenkel 公理(ZF)一致。这个结果对从事数学工作的人来说有相当大的影响,因为这意味着他们在证明哈恩-巴纳赫定理时可以假定选择公理。保罗 · 科恩后来构造了一个 ZF 模型,其中 AC 和 GCH 是假的; 这些证明一起意味着 AC 和 GCH 是独立于集合论的 ZF 公理的。 |
| | | |
− | In 1933, Gödel first traveled to the U.S., where he met [[Albert Einstein]], who became a good friend.<ref>''[[Hutchinson Encyclopedia]]'' (1988), p. 518</ref> He delivered an address to the annual meeting of the [[American Mathematical Society]]. During this year, Gödel also developed the ideas of computability and [[Computable function|recursive functions]] to the point where he was able to present a lecture on general recursive functions and the concept of truth. This work was developed in number theory, using [[Gödel numbering]].
| |
− |
| |
− | 1933年,哥德尔第一次到美国旅行,在那里他遇到了[[阿尔伯特爱因斯坦]],他成了一个好朋友。<ref>“[[Hutchinson Encyclopedia]]”(1988),第518页</ref>他在[[美国数学学会]]年会上发表了演讲。在这一年里,哥德尔还发展了可计算性和[[可计算函数|递归函数]]的思想,以至于他能够就一般递归函数和真理的概念发表演讲。这项工作是在数论中发展起来的,使用了[[Gödel numbering]]。
| |
| | | |
| Gödel spent the spring of 1939 at the University of Notre Dame. | | Gödel spent the spring of 1939 at the University of Notre Dame. |
第276行: |
第162行: |
| | | |
| 1938年3月12日德国合并后,奥地利成为纳粹德国的一部分。 | | 1938年3月12日德国合并后,奥地利成为纳粹德国的一部分。 |
− |
| |
− |
| |
− |
| |
− | Germany abolished the title , so Gödel had to apply for a different position under the new order. His former association with Jewish members of the Vienna Circle, especially with Hahn, weighed against him. The University of Vienna turned his application down.
| |
| | | |
| 德国废除了这个头衔,因此哥德尔不得不在新的秩序下申请一个不同的职位。他以前与维也纳学派的犹太成员,特别是与哈恩的关系对他不利。维也纳大学拒绝了他的申请。 | | 德国废除了这个头衔,因此哥德尔不得不在新的秩序下申请一个不同的职位。他以前与维也纳学派的犹太成员,特别是与哈恩的关系对他不利。维也纳大学拒绝了他的申请。 |
| | | |
− | He married {{ill|Adele Gödel|lt=Adele Nimbursky|es||ast}} (née Porkert, 1899–1981), whom he had known for over 10 years, on September 20, 1938. Gödel's parents had opposed their relationship because she was a divorced dancer, six years older than he was.
| |
− |
| |
− | 1938年9月20日,他与相识超过10年的{ill | Adele Gödel|lt=Adele Nimbursky | es | ast}(née Porkert,1899-1981)结婚。哥德尔的父母反对他们的关系,因为她是一个离异的舞蹈家,比他大6岁。
| |
| | | |
| His predicament intensified when the German army found him fit for conscription. World War II started in September 1939. | | His predicament intensified when the German army found him fit for conscription. World War II started in September 1939. |
第309行: |
第188行: |
| 阿尔伯特 · 爱因斯坦在这段时间也住在普林斯顿。哥德尔和爱因斯坦建立了深厚的友谊,他们一起在高等研究院进行长距离的散步。他们谈话的性质对研究所的其他成员来说是个谜。经济学家约翰 · 奥斯卡·摩根斯腾回忆说,在他生命的最后时刻,他曾坦言自己的工作不再意味着什么,他来到这个研究所仅仅是为了... ... 享受和哥德尔一起走回家的特权。 | | 阿尔伯特 · 爱因斯坦在这段时间也住在普林斯顿。哥德尔和爱因斯坦建立了深厚的友谊,他们一起在高等研究院进行长距离的散步。他们谈话的性质对研究所的其他成员来说是个谜。经济学家约翰 · 奥斯卡·摩根斯腾回忆说,在他生命的最后时刻,他曾坦言自己的工作不再意味着什么,他来到这个研究所仅仅是为了... ... 享受和哥德尔一起走回家的特权。 |
| | | |
− | ===Princeton, Einstein, U.S. citizenship普林斯顿,爱因斯坦,美国公民=== | + | ===普林斯顿,爱因斯坦,美国公民=== |
| | | |
| Gödel and his wife, Adele, spent the summer of 1942 in Blue Hill, Maine, at the Blue Hill Inn at the top of the bay. Gödel was not merely vacationing but had a very productive summer of work. Using [volume 15] of Gödel's still-unpublished [working notebooks], John W. Dawson Jr. conjectures that Gödel discovered a proof for the independence of the axiom of choice from finite type theory, a weakened form of set theory, while in Blue Hill in 1942. Gödel's close friend Hao Wang supports this conjecture, noting that Gödel's Blue Hill notebooks contain his most extensive treatment of the problem. | | Gödel and his wife, Adele, spent the summer of 1942 in Blue Hill, Maine, at the Blue Hill Inn at the top of the bay. Gödel was not merely vacationing but had a very productive summer of work. Using [volume 15] of Gödel's still-unpublished [working notebooks], John W. Dawson Jr. conjectures that Gödel discovered a proof for the independence of the axiom of choice from finite type theory, a weakened form of set theory, while in Blue Hill in 1942. Gödel's close friend Hao Wang supports this conjecture, noting that Gödel's Blue Hill notebooks contain his most extensive treatment of the problem. |
第416行: |
第295行: |
| 在一份未经邮寄的问卷调查中,哥德尔将他的宗教描述为“受洗的路德教徒(但不是任何宗教集会的成员)。我的信仰是有神论的,而不是泛神论的,遵循的是莱布尼茨而不是斯宾诺莎。”在描述宗教时,哥德尔说: “宗教在很大程度上是坏的ーー但宗教不是。”。据他的妻子阿黛尔说,“哥德尔虽然没有去教堂,但他是个虔诚的教徒,每个星期天早上都在床上读《圣经》。”而对于伊斯兰教,他说,“我喜欢伊斯兰教: 它是一个持续的(或者说是重要的)宗教观念,思想开放。” | | 在一份未经邮寄的问卷调查中,哥德尔将他的宗教描述为“受洗的路德教徒(但不是任何宗教集会的成员)。我的信仰是有神论的,而不是泛神论的,遵循的是莱布尼茨而不是斯宾诺莎。”在描述宗教时,哥德尔说: “宗教在很大程度上是坏的ーー但宗教不是。”。据他的妻子阿黛尔说,“哥德尔虽然没有去教堂,但他是个虔诚的教徒,每个星期天早上都在床上读《圣经》。”而对于伊斯兰教,他说,“我喜欢伊斯兰教: 它是一个持续的(或者说是重要的)宗教观念,思想开放。” |
| | | |
− | | last = Toates | + | <ref>{{cite book| last = Toates| first = Frederick|author2=Olga Coschug Toates |
− | | |
− | | first = Frederick | |
− | | |
− | |author2=Olga Coschug Toates | |
| | | |
| The Kurt Gödel Society, founded in 1987, was named in his honor. It is an international organization for the promotion of research in the areas of logic, philosophy, and the history of mathematics. The University of Vienna hosts the Kurt Gödel Research Center for Mathematical Logic. The Association for Symbolic Logic has invited an annual Kurt Gödel lecturer each year since 1990. | | The Kurt Gödel Society, founded in 1987, was named in his honor. It is an international organization for the promotion of research in the areas of logic, philosophy, and the history of mathematics. The University of Vienna hosts the Kurt Gödel Research Center for Mathematical Logic. The Association for Symbolic Logic has invited an annual Kurt Gödel lecturer each year since 1990. |
第523行: |
第398行: |
| | | |
| | | |
− | ===Important publications重要出版物=== | + | ===重要出版物=== |
| | | |
− | In German:
| + | 德语版: |
| | | |
| * 1930, "Die Vollständigkeit der Axiome des logischen Funktionenkalküls." ''Monatshefte für Mathematik und Physik'' '''37''': 349–60. | | * 1930, "Die Vollständigkeit der Axiome des logischen Funktionenkalküls." ''Monatshefte für Mathematik und Physik'' '''37''': 349–60. |
第533行: |
第408行: |
| * 1932, "Zum intuitionistischen Aussagenkalkül", ''Anzeiger Akademie der Wissenschaften Wien'' '''69''': 65–66. | | * 1932, "Zum intuitionistischen Aussagenkalkül", ''Anzeiger Akademie der Wissenschaften Wien'' '''69''': 65–66. |
| | | |
− | 德语版:
| |
− |
| |
− | *1930年,《逻辑原理》第349-60页。
| |
| | | |
− | *1931年,“正规的非正规的Sätze der”[[Principia Mathematica]]''und verwandter Systeme,I.“‘Monatshefte für Mathematik und Physik'''38'':173–98。
| + | 英语版: |
| | | |
− | *1932年,“Zum直觉主义者是一个天才,”Anzeiger Akademie der Wissenschaften Wien,“69”:65-66。
| |
− |
| |
− | In English:
| |
| | | |
| * 1940. ''The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory.'' Princeton University Press. | | * 1940. ''The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory.'' Princeton University Press. |
第549行: |
第418行: |
| * 1950, "Rotating Universes in General Relativity Theory." ''Proceedings of the international Congress of Mathematicians in Cambridge,'' '''1''': 175–81 | | * 1950, "Rotating Universes in General Relativity Theory." ''Proceedings of the international Congress of Mathematicians in Cambridge,'' '''1''': 175–81 |
| | | |
− | 英语版:
| |
| | | |
− | *1940年选择公理和广义连续统假设与集合论公理的一致性,普林斯顿大学出版社。
| + | 英文翻译: |
− | | |
− | *1947年。”什么是康托连续统问题?”“美国数学月刊54'':515-25。修订版在[[Paul Benacerraf]]和[[Hilary Putnam]]编辑,1984年(1964年)数学哲学:选读。剑桥大学出版社:470–85。
| |
− | | |
− | *1950年,“广义相对论中的旋转宇宙”,《剑桥国际数学家大会论文集》,“1”:175–81
| |
− | | |
− | In English translation:
| |
| | | |
| * Kurt Gödel, 1992. ''On Formally Undecidable Propositions Of Principia Mathematica And Related Systems'', tr. B. Meltzer, with a comprehensive introduction by [[R. B. Braithwaite|Richard Braithwaite]]. Dover reprint of the 1962 Basic Books edition. | | * Kurt Gödel, 1992. ''On Formally Undecidable Propositions Of Principia Mathematica And Related Systems'', tr. B. Meltzer, with a comprehensive introduction by [[R. B. Braithwaite|Richard Braithwaite]]. Dover reprint of the 1962 Basic Books edition. |
第593行: |
第455行: |
| ** Volume 1: Philosophie I Maximen 0 / Philosophy I Maxims 0 {{isbn|978-3-11-058374-8}}. | | ** Volume 1: Philosophie I Maximen 0 / Philosophy I Maxims 0 {{isbn|978-3-11-058374-8}}. |
| | | |
− | ==See also请参阅== | + | ==另见== |
− | | |
− | {{Portal|Biography|Philosophy}}
| |
| | | |
| * [[Gödel machine]] | | * [[Gödel machine]] |
第609行: |
第469行: |
| * [[Original proof of Gödel's completeness theorem]] | | * [[Original proof of Gödel's completeness theorem]] |
| | | |
− | {{Portal{传记}哲学}}
| |
| | | |
| *[[哥德尔机器]] | | *[[哥德尔机器]] |
第623行: |
第482行: |
| * [[哥德尔完备性定理的原始证明]] | | * [[哥德尔完备性定理的原始证明]] |
| | | |
− | ==Notes注释== | + | ==参考文献== |
| | | |
| {{reflist|colwidth=30em}} | | {{reflist|colwidth=30em}} |
| | | |
− | ==References参考文献== | + | ==其他文献== |
| | | |
| * {{Citation | last = Dawson | first = John W | year = 1997 | title = Logical dilemmas: The life and work of Kurt Gödel | place = Wellesley, MA | publisher = AK Peters}}. | | * {{Citation | last = Dawson | first = John W | year = 1997 | title = Logical dilemmas: The life and work of Kurt Gödel | place = Wellesley, MA | publisher = AK Peters}}. |
第633行: |
第492行: |
| * {{Citation | first = Rebecca | last = Goldstein | authorlink = Rebecca Goldstein | year = 2005 | title = Incompleteness: The Proof and Paradox of Kurt Gödel | publisher = W.W. Norton & Co | place = New York | isbn = 978-0-393-32760-1 }}. | | * {{Citation | first = Rebecca | last = Goldstein | authorlink = Rebecca Goldstein | year = 2005 | title = Incompleteness: The Proof and Paradox of Kurt Gödel | publisher = W.W. Norton & Co | place = New York | isbn = 978-0-393-32760-1 }}. |
| | | |
− | ==Further reading拓展阅读== | + | ==进一步阅读== |
| | | |
| * {{Citation | first1 = John L | last1 = Casti | first2 = Werner | last2 = DePauli | year = 2000 | title = Gödel: A Life of Logic | publisher = Basic Books (Perseus Books Group) | place = Cambridge, MA | isbn = 978-0-7382-0518-2}}. | | * {{Citation | first1 = John L | last1 = Casti | first2 = Werner | last2 = DePauli | year = 2000 | title = Gödel: A Life of Logic | publisher = Basic Books (Perseus Books Group) | place = Cambridge, MA | isbn = 978-0-7382-0518-2}}. |
第683行: |
第542行: |
| * Yourgrau, Palle, 2004. ''A World Without Time: The Forgotten Legacy of Gödel and Einstein.'' Basic Books. Book review by John Stachel in the Notices of the American Mathematical Society ('''54''' (7), pp. 861–68): <!-- Comment<ref>http://www.ams.org/notices/200707/tx070700861p.pdf</ref>--> | | * Yourgrau, Palle, 2004. ''A World Without Time: The Forgotten Legacy of Gödel and Einstein.'' Basic Books. Book review by John Stachel in the Notices of the American Mathematical Society ('''54''' (7), pp. 861–68): <!-- Comment<ref>http://www.ams.org/notices/200707/tx070700861p.pdf</ref>--> |
| | | |
− | ==External links外部链接==
| |
− |
| |
− | {{Commons category|Kurt Gödel}}
| |
− |
| |
− | {{Wikiquote}}
| |
− |
| |
− | * {{ScienceWorldBiography | urlname=Goedel | title=Gödel, Kurt (1906–1978)}}
| |
| | | |
− | * {{cite SEP |url-id=goedel |title=Kurt Gödel |last=Kennedy |first=Juliette}}
| + | ==外部链接== |
| | | |
| * [http://www.newyorker.com/archive/2005/02/28/050228crat_atlarge Time Bandits]: an article about the relationship between Gödel and Einstein by Jim Holt | | * [http://www.newyorker.com/archive/2005/02/28/050228crat_atlarge Time Bandits]: an article about the relationship between Gödel and Einstein by Jim Holt |