第107行: |
第107行: |
| In the 1980s Lugiato and Lefever developed a model of light propagation in an optical cavity that results in pattern formation by the exploitation of nonlinear effects. | | In the 1980s Lugiato and Lefever developed a model of light propagation in an optical cavity that results in pattern formation by the exploitation of nonlinear effects. |
| | | |
− | 20世纪80年代,卢贾托Lugiato和勒弗Lefever开发了一个光在光学谐振腔中传播的模型,该模型通过利用非线性效应形成斑图。
| + | 20世纪80年代,'''卢贾托 Lugiato'''和'''勒弗 Lefever'''开发了一个光在光学谐振腔中传播的模型,该模型通过利用非线性效应形成斑图。 |
| | | |
| [[Bénard cell]]s, [[laser]], [[cloud|cloud formation]]s in stripes or rolls. Ripples in icicles. Washboard patterns on dirtroads. [[dendrite (crystal)|Dendrites]] in [[freezing|solidification]], [[liquid crystal]]s. [[Soliton]]s. | | [[Bénard cell]]s, [[laser]], [[cloud|cloud formation]]s in stripes or rolls. Ripples in icicles. Washboard patterns on dirtroads. [[dendrite (crystal)|Dendrites]] in [[freezing|solidification]], [[liquid crystal]]s. [[Soliton]]s. |
第113行: |
第113行: |
| Bénard cells, laser, cloud formations in stripes or rolls. Ripples in icicles. Washboard patterns on dirtroads. Dendrites in solidification, liquid crystals. Solitons. | | Bénard cells, laser, cloud formations in stripes or rolls. Ripples in icicles. Washboard patterns on dirtroads. Dendrites in solidification, liquid crystals. Solitons. |
| | | |
− | 如贝纳尔细胞、激光、条状云或卷状云、冰柱上的涟漪、泥路上的洗衣板等图案以及凝固中的树枝状、液晶、孤子等。
| + | 如贝纳尔涡流、激光、条状云或卷状云、冰柱上的涟漪、泥路上的洗衣板等图案以及凝固中的树枝状、液晶、孤子等。 |
| | | |
| '''Rayleigh-Bénard convection''' is a type of natural convection, occurring in a planar horizontal layer of fluid heated from below, in which the fluid develops a regular pattern of convection cells known as '''Bénard cells'''. Bénard–Rayleigh convection is one of the most commonly studied convection phenomena because of its analytical and experimental accessibility. The convection patterns are the most carefully examined example of self-organizing nonlinear systems. | | '''Rayleigh-Bénard convection''' is a type of natural convection, occurring in a planar horizontal layer of fluid heated from below, in which the fluid develops a regular pattern of convection cells known as '''Bénard cells'''. Bénard–Rayleigh convection is one of the most commonly studied convection phenomena because of its analytical and experimental accessibility. The convection patterns are the most carefully examined example of self-organizing nonlinear systems. |
| + | |
| + | 瑞利-伯纳德对流是一种自然对流,当从下方加热流体时,出现在流体表面水平层中,其中流体会产生一种形似细胞的规则对流斑图,称为伯纳德涡流。由于无论是进行理论分析还是实验研究都很方便,瑞利-伯纳德对流是研究最广泛的对流现象之一。这一对流斑图是自组织非线性系统中研究最透彻的一例。 |
| | | |
| Buoyancy, and hence gravity, are responsible for the appearance of convection cells. The initial movement is the upwelling of lesser density fluid from the heated bottom layer. This upwelling spontaneously organizes into a regular pattern of cells. | | Buoyancy, and hence gravity, are responsible for the appearance of convection cells. The initial movement is the upwelling of lesser density fluid from the heated bottom layer. This upwelling spontaneously organizes into a regular pattern of cells. |