更改

跳到导航 跳到搜索
添加83字节 、 2021年7月27日 (二) 19:11
第69行: 第69行:     
这种技术被广泛地描述为“麦克斯韦妖”,因为它通过将高能和低能原子分类到不同的容器中产生温差实现了Maxwell的过程。然而,科学家已经指出,它不是一个真正的麦克斯韦妖,因为它没有违反热力学第二定律; 它不会导致熵减,也不能用来产生有用的能量。这是因为这个过程需要更多的能量从激光束比可能产生的温差。原子从激光束中吸收低熵的光子,并以随机方向发射它们,从而增加了环境的熵。
 
这种技术被广泛地描述为“麦克斯韦妖”,因为它通过将高能和低能原子分类到不同的容器中产生温差实现了Maxwell的过程。然而,科学家已经指出,它不是一个真正的麦克斯韦妖,因为它没有违反热力学第二定律; 它不会导致熵减,也不能用来产生有用的能量。这是因为这个过程需要更多的能量从激光束比可能产生的温差。原子从激光束中吸收低熵的光子,并以随机方向发射它们,从而增加了环境的熵。
 +
[[文件:Szilárd引擎实验.jpg|缩略图|500x500像素|Szilárd引擎实验]]
 +
 +
    
2014年,佩科拉 Pekola等人展示了Szilárd引擎实验的实现。仅仅一年之后,同一个研究小组根据早先的理论提议,第一次实验性地实现了自主的麦克斯韦妖,它从一个系统中提取微观信息,并通过反馈减少系统的熵。这个妖是基于集成在同一电路上的两个电容耦合的单电子器件。妖的运行直接表现为系统中的温度下降,同时由于产生互信息的热力学成本而引起的妖中的温度上升。2016年,Pekola等人证明了单电子耦合电路中存在自主妖的原理,展示了一种以信息为燃料冷却电路中关键元件的方法。Pekola等人还提出,一个简单的量子比特电路,例如由超导电路构成的电路,可以为研究量子Szilárd引擎提供基础。
 
2014年,佩科拉 Pekola等人展示了Szilárd引擎实验的实现。仅仅一年之后,同一个研究小组根据早先的理论提议,第一次实验性地实现了自主的麦克斯韦妖,它从一个系统中提取微观信息,并通过反馈减少系统的熵。这个妖是基于集成在同一电路上的两个电容耦合的单电子器件。妖的运行直接表现为系统中的温度下降,同时由于产生互信息的热力学成本而引起的妖中的温度上升。2016年,Pekola等人证明了单电子耦合电路中存在自主妖的原理,展示了一种以信息为燃料冷却电路中关键元件的方法。Pekola等人还提出,一个简单的量子比特电路,例如由超导电路构成的电路,可以为研究量子Szilárd引擎提供基础。

导航菜单