| define human factors and physical environment as two important aspects relating to computer science. More recently, much work has also been done to ease the distribution of context information; Bellavista, Corradi, Fanelli & Foschini survey the several middleware solutions that have been designed to transparently implement context management and provisioning in the mobile system. Grifoni, D'Ulizia & Ferri provided a review of several context-aware location-based service systems using big data by analysing the methodological and practical choices that their developers made during the main phases of the context awareness process (i.e. context acquisition, context representation, and context reasoning and adaptation). Perera, Zaslavsky, Christen, & Georgakopoulos have performed a comprehensive survey on context-aware computing from Internet of Things perspective by reviewing over 50 leading projects in the field. Further, Perera has also surveyed a large number of industrial products in the existing IoT marketplace from context-aware computing perspective. Their survey is intended to serve as a guideline and a conceptual framework for context-aware product development and research in the IoT paradigm. The evaluation has been done using the theoretical framework developed by Dey and Abowd (1999) more than a decade ago. The combination of the Internet and emerging technologies transform everyday objects into smart objects that can understand and react to their contexts. | | define human factors and physical environment as two important aspects relating to computer science. More recently, much work has also been done to ease the distribution of context information; Bellavista, Corradi, Fanelli & Foschini survey the several middleware solutions that have been designed to transparently implement context management and provisioning in the mobile system. Grifoni, D'Ulizia & Ferri provided a review of several context-aware location-based service systems using big data by analysing the methodological and practical choices that their developers made during the main phases of the context awareness process (i.e. context acquisition, context representation, and context reasoning and adaptation). Perera, Zaslavsky, Christen, & Georgakopoulos have performed a comprehensive survey on context-aware computing from Internet of Things perspective by reviewing over 50 leading projects in the field. Further, Perera has also surveyed a large number of industrial products in the existing IoT marketplace from context-aware computing perspective. Their survey is intended to serve as a guideline and a conceptual framework for context-aware product development and research in the IoT paradigm. The evaluation has been done using the theoretical framework developed by Dey and Abowd (1999) more than a decade ago. The combination of the Internet and emerging technologies transform everyday objects into smart objects that can understand and react to their contexts. |
| Human factors related context is structured into three categories: information on the user (knowledge of habits, emotional state, biophysiological conditions), the user's social environment (co-location of others, social interaction, group dynamics), and the user's tasks (spontaneous activity, engaged tasks, general goals). Likewise, context related to physical environment is structured into three categories: location (absolute position, relative position, [[wikt:colocation|co-location]]), infrastructure (surrounding resources for computation, communication, task performance), and physical conditions (noise, light, pressure, air quality).<ref>[https://link.springer.com/article/10.1007%2Fs11042-010-0711-z?LI=true A Comprehensive Framework for Context-Aware Communication Systems. B. Chihani, E. Bertin, N. Crespi. 15th International Conference on Intelligence in Next Generation Networks (ICIN'11), Berlin, Germany, October 2011]</ref><ref>[https://ieeexplore.ieee.org/document/5956518 A Self-Organization Mechanism for a Cold Chain Monitoring System. C. Nicolas, M. Marot, M. Becker. 73rd Vehicular Technology Conference 2011 IEEE (VTC Spring), Yokohama, Japan May 2011]</ref> | | Human factors related context is structured into three categories: information on the user (knowledge of habits, emotional state, biophysiological conditions), the user's social environment (co-location of others, social interaction, group dynamics), and the user's tasks (spontaneous activity, engaged tasks, general goals). Likewise, context related to physical environment is structured into three categories: location (absolute position, relative position, [[wikt:colocation|co-location]]), infrastructure (surrounding resources for computation, communication, task performance), and physical conditions (noise, light, pressure, air quality).<ref>[https://link.springer.com/article/10.1007%2Fs11042-010-0711-z?LI=true A Comprehensive Framework for Context-Aware Communication Systems. B. Chihani, E. Bertin, N. Crespi. 15th International Conference on Intelligence in Next Generation Networks (ICIN'11), Berlin, Germany, October 2011]</ref><ref>[https://ieeexplore.ieee.org/document/5956518 A Self-Organization Mechanism for a Cold Chain Monitoring System. C. Nicolas, M. Marot, M. Becker. 73rd Vehicular Technology Conference 2011 IEEE (VTC Spring), Yokohama, Japan May 2011]</ref> |