更改

跳到导航 跳到搜索
删除4,867字节 、 2021年7月29日 (四) 17:06
无编辑摘要
第24行: 第24行:  
自发对称破缺是一个自发的对称破缺过程,它使处于对称状态的物理系统最终处于非对称状态。特别地,它可以描述运动方程或拉格朗日方程服从某种对称性,但最低能量真空解不具有该对称性的系统。当系统进入其中一个真空解时,真空解周围的扰动会破坏系统对称性,尽管整个拉格朗日方程仍然保持了对称性。
 
自发对称破缺是一个自发的对称破缺过程,它使处于对称状态的物理系统最终处于非对称状态。特别地,它可以描述运动方程或拉格朗日方程服从某种对称性,但最低能量真空解不具有该对称性的系统。当系统进入其中一个真空解时,真空解周围的扰动会破坏系统对称性,尽管整个拉格朗日方程仍然保持了对称性。
   −
==Examples 例子==
+
==例子==
   −
===Sombrero potential Sombrero势===
+
======
Consider a symmetric upward dome with a trough circling the bottom. If a ball is put at the very peak of the dome, the system is symmetric with respect to a rotation around the center axis.  But the ball may ''spontaneously break'' this symmetry by rolling down the dome into the trough, a point of lowest energy. Afterward, the ball has come to a rest at some fixed point on the perimeter.  The dome and the ball retain their individual symmetry, but the system does not.<ref>{{cite book |first=Gerald M. |last=Edelman |title=Bright Air, Brilliant Fire: On the Matter of the Mind |location=New York |publisher=BasicBooks |year=1992 |url=https://archive.org/details/brightairbrillia00gera |url-access=registration |page=[https://archive.org/details/brightairbrillia00gera/page/203 203] }}</ref>
     −
考虑一个对称向上的圆顶,底部环绕着一个槽。如果把一个球放在圆顶的最顶端,这个系统是围绕中心轴旋转对称的。但球体可能会沿着穹顶滚动到能量最低的槽中,从而自发地打破这种对称性。然后,球在圆周上某个固定的点上停下来。圆顶和球保持了各自的对称,但系统却没有保持对称性。
+
考虑一个对称向上的圆顶,底部环绕着一个槽。如果把一个球放在圆顶的最顶端,这个系统是围绕中心轴旋转对称的。但球体可能会沿着穹顶滚动到能量最低的槽中,从而自发地打破这种对称性。然后,球在圆周上某个固定的点上停下来。圆顶和球保持了各自的对称,但系统却没有保持对称性。<ref>{{cite book |first=Gerald M. |last=Edelman |title=Bright Air, Brilliant Fire: On the Matter of the Mind |location=New York |publisher=BasicBooks |year=1992 |url=https://archive.org/details/brightairbrillia00gera |url-access=registration |page=[https://archive.org/details/brightairbrillia00gera/page/203 203] }}</ref>
 
[[Image:Mexican hat potential polar.svg|270px|thumb|left|Graph of Goldstone's "[[sombrero]]" potential function <math>V(\phi)</math>.|链接=Special:FilePath/Mexican_hat_potential_polar.svg]]
 
[[Image:Mexican hat potential polar.svg|270px|thumb|left|Graph of Goldstone's "[[sombrero]]" potential function <math>V(\phi)</math>.|链接=Special:FilePath/Mexican_hat_potential_polar.svg]]
   第37行: 第36行:  
{{NumBlk|::|<math>\mathcal{L} = \partial^\mu \phi \partial_\mu \phi - V(\phi).</math>|{{EquationRef|1}}}}
 
{{NumBlk|::|<math>\mathcal{L} = \partial^\mu \phi \partial_\mu \phi - V(\phi).</math>|{{EquationRef|1}}}}
   −
It is in this potential term <math>V(\phi)</math> that the symmetry breaking is triggered. An example of a potential, due to [[Jeffrey Goldstone]]<ref>{{Cite journal | last1 = Goldstone | first1 = J. | doi = 10.1007/BF02812722 | title = Field theories with " Superconductor " solutions | journal = Il Nuovo Cimento | volume = 19 | issue = 1 | pages = 154–164 | year = 1961 | bibcode = 1961NCim...19..154G | s2cid = 120409034 | url = http://cds.cern.ch/record/343400 }}</ref> is illustrated in the graph at the left.
     −
正是在势能项 <math>V(\phi)</math> 中触发了对称性破缺。例如左图所示的 [[Jeffrey Goldstone]] 给出的势能函数:
+
正是在势能项 <math>V(\phi)</math> 中触发了对称性破缺。例如左图所示的 [[Jeffrey Goldstone]] <ref>{{Cite journal | last1 = Goldstone | first1 = J. | doi = 10.1007/BF02812722 | title = Field theories with " Superconductor " solutions | journal = Il Nuovo Cimento | volume = 19 | issue = 1 | pages = 154–164 | year = 1961 | bibcode = 1961NCim...19..154G | s2cid = 120409034 | url = http://cds.cern.ch/record/343400 }}</ref>给出的势能函数:
 
{{NumBlk|::|<math>V(\phi) = -5|\phi|^2 + |\phi|^4 \,</math>.|{{EquationRef|2}}}}
 
{{NumBlk|::|<math>V(\phi) = -5|\phi|^2 + |\phi|^4 \,</math>.|{{EquationRef|2}}}}
   第80行: 第78行:  
在粒子物理学中,载力子通常由规范对称的场方程表示;这些方程预测到某些测量值在场的任何点上都是相同的。例如,场方程可以预测两个夸克的质量和是常数。通过求解方程来求单个夸克的质量可能会得到两个解。在一个解中,夸克A比夸克B重;在第二个解中,夸克B比夸克A重,并且两个解中质量差相同。方程的对称性不是由单个解来反映的,而是由解的范围来反映的。
 
在粒子物理学中,载力子通常由规范对称的场方程表示;这些方程预测到某些测量值在场的任何点上都是相同的。例如,场方程可以预测两个夸克的质量和是常数。通过求解方程来求单个夸克的质量可能会得到两个解。在一个解中,夸克A比夸克B重;在第二个解中,夸克B比夸克A重,并且两个解中质量差相同。方程的对称性不是由单个解来反映的,而是由解的范围来反映的。
   −
An actual measurement reflects only one solution, representing a breakdown in the symmetry of the underlying theory. "Hidden" is a better term than "broken", because the symmetry is always there in these equations. This phenomenon is called [[Spontaneous magnetization|''spontaneous'']] symmetry breaking (SSB) because ''nothing'' (that we know of) breaks the symmetry in the equations.<ref name="Weinberg2011">{{cite book|author=Steven Weinberg|title=Dreams of a Final Theory: The Scientist's Search for the Ultimate Laws of Nature|url=https://books.google.com/books?id=Rsg3PE_9_ccC|date=20 April 2011|publisher=Knopf Doubleday Publishing Group|isbn=978-0-307-78786-6}}</ref>{{rp|194–195}}
     −
一个实际的测量只反映了一个解,这代表了其潜在理论的对称性的破缺。在这里“隐藏”是比“破缺”更好的术语,因为对称性总是存在于这些方程中。这种现象被称为自发对称破缺(SSB),因为(我们所知道的)没有任何东西会打破方程中的对称性。
+
一个实际的测量只反映了一个解,这代表了其潜在理论的对称性的破缺。在这里“隐藏”是比“破缺”更好的术语,因为对称性总是存在于这些方程中。这种现象被称为自发对称破缺(SSB),因为(我们所知道的)没有任何东西会打破方程中的对称性。<ref name="Weinberg2011">{{cite book|author=Steven Weinberg|title=Dreams of a Final Theory: The Scientist's Search for the Ultimate Laws of Nature|url=https://books.google.com/books?id=Rsg3PE_9_ccC|date=20 April 2011|publisher=Knopf Doubleday Publishing Group|isbn=978-0-307-78786-6}}</ref>
    
====Chiral symmetry 手性对称性====
 
====Chiral symmetry 手性对称性====
第97行: 第94行:  
强、弱和电磁力都可以理解为来自规范对称。希格斯机制,即规范对称的自发对称破缺机制,是理解金属超导性和粒子物理标准模型中粒子质量起源的重要组成部分。区分真正的对称性和规范对称性的一个重要的结果,是规范对称性的自发破缺不产生典型的无质量 Nambu-Goldstone 物理模式,而只产生有质量的模式,像超导体中的等离子体模式,或者粒子物理学中观察到的希格斯模式。
 
强、弱和电磁力都可以理解为来自规范对称。希格斯机制,即规范对称的自发对称破缺机制,是理解金属超导性和粒子物理标准模型中粒子质量起源的重要组成部分。区分真正的对称性和规范对称性的一个重要的结果,是规范对称性的自发破缺不产生典型的无质量 Nambu-Goldstone 物理模式,而只产生有质量的模式,像超导体中的等离子体模式,或者粒子物理学中观察到的希格斯模式。
   −
In the standard model of particle physics, spontaneous symmetry breaking of the {{nowrap|SU(2) × U(1)}} gauge symmetry associated with the electro-weak force generates masses for several particles, and separates the electromagnetic and weak forces. The [[W and Z bosons]] are the elementary particles that mediate the [[weak interaction]], while the [[photon]] mediates the [[electromagnetic interaction]]. At energies much greater than 100 GeV, all these particles behave in a similar manner. The [[Unified field theory#Modern progress|Weinberg–Salam theory]] predicts that, at lower energies, this symmetry is broken so that the photon and the massive W and Z bosons emerge.<ref>A Brief History of Time, Stephen Hawking, Bantam; 10th anniversary edition (1998). pp. 73–74.{{ISBN?}}</ref> In addition, fermions develop mass consistently.
     −
在粒子物理的标准模型中,与电弱力相关的SU(2) × U(1)规范对称性自发破缺产生多种粒子的质量,并将电磁力和弱相互作用分离。W玻色子和Z玻色子是介导弱相互作用的基本粒子,而光子介导电磁相互作用。当能量远远大于100 GeV时,所有这些粒子的行为都相似。Weinberg-Salam理论预测,在较低的能量下,这种对称性被打破,光子和大质量的W和Z玻色子就会出现。此外,费米子不断地产生质量。
+
在粒子物理的标准模型中,与电弱力相关的SU(2) × U(1)规范对称性自发破缺产生多种粒子的质量,并将电磁力和弱相互作用分离。W玻色子和Z玻色子是介导弱相互作用的基本粒子,而光子介导电磁相互作用。当能量远远大于100 GeV时,所有这些粒子的行为都相似。Weinberg-Salam理论预测,在较低的能量下,这种对称性被打破,光子和大质量的W和Z玻色子就会出现。<ref>A Brief History of Time, Stephen Hawking, Bantam; 10th anniversary edition (1998). pp. 73–74.{{ISBN?}}</ref>此外,费米子不断地产生质量。
    
Without spontaneous symmetry breaking, the [[Standard Model]] of elementary particle interactions requires the existence of a number of particles. However, some particles (the [[W and Z bosons]]) would then be predicted to be massless, when, in reality, they are observed to have mass. To overcome this, spontaneous symmetry breaking is augmented by the [[Higgs mechanism]] to give these particles mass. It also suggests the presence of a new particle, the [[Higgs boson]], detected in 2012.
 
Without spontaneous symmetry breaking, the [[Standard Model]] of elementary particle interactions requires the existence of a number of particles. However, some particles (the [[W and Z bosons]]) would then be predicted to be massless, when, in reality, they are observed to have mass. To overcome this, spontaneous symmetry breaking is augmented by the [[Higgs mechanism]] to give these particles mass. It also suggests the presence of a new particle, the [[Higgs boson]], detected in 2012.
第114行: 第110行:  
物质的大多数相态都可以通过自发对称性破缺的透镜来理解。例如,晶体是原子的周期性排列,它并非在所有平移下(仅在晶格向量平移的一个小子集下)都是不变的。磁体有朝向特定方向的南极和北极,打破了旋转对称。除了这些例子,还有一大堆其他的物质对称性破缺相——包括液晶的向列相、电荷和自旋密度波、超流体等等。
 
物质的大多数相态都可以通过自发对称性破缺的透镜来理解。例如,晶体是原子的周期性排列,它并非在所有平移下(仅在晶格向量平移的一个小子集下)都是不变的。磁体有朝向特定方向的南极和北极,打破了旋转对称。除了这些例子,还有一大堆其他的物质对称性破缺相——包括液晶的向列相、电荷和自旋密度波、超流体等等。
   −
There are several known examples of matter that cannot be described by spontaneous symmetry breaking, including: topologically ordered phases of matter, such as [[Fractional quantum Hall effect|fractional quantum Hall liquids]], and [[Quantum spin liquid|spin-liquids]]. These states do not break any symmetry, but are distinct phases of matter. Unlike the case of spontaneous symmetry breaking, there is not a general framework for describing such states.<ref name=chen>{{cite journal | last1 = Chen | first1 = Xie | author-link3 = Xiao-Gang Wen | last2 = Gu | first2 = Zheng-Cheng | last3 = Wen | first3 = Xiao-Gang | year = 2010 | title = Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order | journal = Phys. Rev. B | volume = 82 | issue = 15| page = 155138 | doi=10.1103/physrevb.82.155138|arxiv = 1004.3835 |bibcode = 2010PhRvB..82o5138C | s2cid = 14593420 }}</ref>
+
目前已知的不能用自发对称破缺来描述的几个例子包括:物质的拓扑有序相,如分数量子霍尔液体和自旋液体。这些状态并不破坏任何对称性,然而它们是物质的不同相。与自发对称破缺的情况不同,目前还没有一个描述这种状态的一般框架。<ref name=chen>{{cite journal | last1 = Chen | first1 = Xie | author-link3 = Xiao-Gang Wen | last2 = Gu | first2 = Zheng-Cheng | last3 = Wen | first3 = Xiao-Gang | year = 2010 | title = Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order | journal = Phys. Rev. B | volume = 82 | issue = 15| page = 155138 | doi=10.1103/physrevb.82.155138|arxiv = 1004.3835 |bibcode = 2010PhRvB..82o5138C | s2cid = 14593420 }}</ref>
 
  −
目前已知的不能用自发对称破缺来描述的几个例子包括:物质的拓扑有序相,如分数量子霍尔液体和自旋液体。这些状态并不破坏任何对称性,然而它们是物质的不同相。与自发对称破缺的情况不同,目前还没有一个描述这种状态的一般框架。
      
====Continuous symmetry 连续对称性====
 
====Continuous symmetry 连续对称性====
第135行: 第129行:  
由Mermin和Wagner提出的一个重要定理指出,在有限温度下, [[Nambu–Goldstone boson|Nambu–Goldstone]] 模式热激活的扰动破坏了长程有序,并阻止了一维和二维系统中对称性的自发破缺。类似地,即使是在零温度下,序参量的量子涨落阻止了一维系统中大多数类型的连续对称破缺。(一个重要的例外是铁磁体,其序参量磁化强度是一个精确的守恒量,不存在任何量子涨落。)
 
由Mermin和Wagner提出的一个重要定理指出,在有限温度下, [[Nambu–Goldstone boson|Nambu–Goldstone]] 模式热激活的扰动破坏了长程有序,并阻止了一维和二维系统中对称性的自发破缺。类似地,即使是在零温度下,序参量的量子涨落阻止了一维系统中大多数类型的连续对称破缺。(一个重要的例外是铁磁体,其序参量磁化强度是一个精确的守恒量,不存在任何量子涨落。)
   −
Other long-range interacting systems, such as cylindrical curved surfaces interacting via the [[Coulomb potential]] or [[Yukawa potential]], have been shown to break translational and rotational symmetries.<ref>
+
其他长程相互作用系统,如圆柱曲面通过库仑势或汤川势相互作用,已被证明打破平移和旋转对称。<ref>
 
{{cite journal
 
{{cite journal
 
  |last1=Kohlstedt |first1=K.L.
 
  |last1=Kohlstedt |first1=K.L.
第148行: 第142行:  
  |doi=10.1103/PhysRevLett.99.030602
 
  |doi=10.1103/PhysRevLett.99.030602
 
|arxiv = 0704.3435 |bibcode = 2007PhRvL..99c0602K |pmid=17678276|s2cid=37983980
 
|arxiv = 0704.3435 |bibcode = 2007PhRvL..99c0602K |pmid=17678276|s2cid=37983980
  }}</ref> It was shown, in the presence of a symmetric Hamiltonian, and in the limit of infinite volume, the system spontaneously adopts a chiral configuration — i.e., breaks [[mirror plane]] [[symmetry]].
+
  }}</ref>结果表明,在对称哈密顿量存在的情况下,在无限体积的极限下,系统自发地采用手性构型,即打破镜面对称。
 
  −
其他长程相互作用系统,如圆柱曲面通过库仑势或汤川势相互作用,已被证明打破平移和旋转对称。结果表明,在对称哈密顿量存在的情况下,在无限体积的极限下,系统自发地采用手性构型,即打破镜面对称。
      
===Dynamical symmetry breaking 动力学对称性破缺===
 
===Dynamical symmetry breaking 动力学对称性破缺===
第161行: 第153行:  
全局对称性的动力学破缺是自发对称性破缺,它不是发生在(经典)树的水平(例如在bare作用的水平),而是由于量子修正(例如在有效作用的水平)。
 
全局对称性的动力学破缺是自发对称性破缺,它不是发生在(经典)树的水平(例如在bare作用的水平),而是由于量子修正(例如在有效作用的水平)。
   −
Dynamical breaking of a gauge symmetry {{ref|note1}} is subtler. In the conventional spontaneous gauge symmetry breaking, there exists an unstable [[Higgs particle]] in the theory, which drives the vacuum to a symmetry-broken phase. (See, for example, [[electroweak interaction]].) In dynamical gauge symmetry breaking, however, no unstable Higgs particle operates in the theory, but the bound states of the system itself provide the unstable fields that render the phase transition. For example, Bardeen, Hill, and Lindner published a paper that attempts to replace the conventional [[Higgs mechanism]] in the [[standard model]] by a DSB that is driven by a bound state of top-antitop quarks. (Such models, in which a composite particle plays the role of the Higgs boson, are often referred to as "Composite Higgs models".)<ref>
+
规范对称性动力学破缺更加微妙。在常规规范对称自发破缺理论中,存在一个不稳定的希格斯粒子,希格斯粒子驱动真空态进入对称破缺相。(例如,参见弱电相互作用。)然而,在规范对称性动力学破缺中,不存在不稳定的希格斯粒子,但系统本身的束缚态提供了导致相变的不稳定场。例如,巴丁、希尔和林德纳发表了一篇论文,试图用一个由顶-反顶夸克束缚状态驱动的DSB来取代标准模型中的传统希格斯机制。(在这种模型中,复合粒子扮演希格斯玻色子的角色,通常被称为“复合希格斯模型”。<ref>
 
{{cite journal
 
{{cite journal
 
  |author1=William A. Bardeen
 
  |author1=William A. Bardeen
第176行: 第168行:  
|pmid=10012522
 
|pmid=10012522
 
  |author1-link=William A. Bardeen
 
  |author1-link=William A. Bardeen
  }}</ref> Dynamical breaking of gauge symmetries is often due to creation of a [[fermionic condensate]] — e.g., the [[quark condensate]], which is connected to the [[Chiral symmetry breaking|dynamical breaking of chiral symmetry]] in [[quantum chromodynamics]]. Conventional [[superconductivity]] is the paradigmatic example from the condensed matter side, where phonon-mediated attractions lead electrons to become bound in pairs and then condense, thereby breaking the electromagnetic gauge symmetry.
+
  }}</ref>)规范对称性动力学破缺通常是由于费米凝聚的产生,例如夸克凝聚,它与量子色动力学中手性对称的动力学破缺有关。传统的超导性是凝聚态物质方面的典型例子,声子的吸引导致电子成对结合然后凝聚,从而打破电磁规范对称性。
 
  −
规范对称性动力学破缺更加微妙。在常规规范对称自发破缺理论中,存在一个不稳定的希格斯粒子,希格斯粒子驱动真空态进入对称破缺相。(例如,参见弱电相互作用。)然而,在规范对称性动力学破缺中,不存在不稳定的希格斯粒子,但系统本身的束缚态提供了导致相变的不稳定场。例如,巴丁、希尔和林德纳发表了一篇论文,试图用一个由顶-反顶夸克束缚状态驱动的DSB来取代标准模型中的传统希格斯机制。(在这种模型中,复合粒子扮演希格斯玻色子的角色,通常被称为“复合希格斯模型”。)规范对称性动力学破缺通常是由于费米凝聚的产生,例如夸克凝聚,它与量子色动力学中手性对称的动力学破缺有关。传统的超导性是凝聚态物质方面的典型例子,声子的吸引导致电子成对结合然后凝聚,从而打破电磁规范对称性。
      
==Generalisation and technical usage 广义描述和技术运用==
 
==Generalisation and technical usage 广义描述和技术运用==
第198行: 第188行:     
==Nobel Prize 诺贝尔奖==
 
==Nobel Prize 诺贝尔奖==
On October 7, 2008, the [[Royal Swedish Academy of Sciences]] awarded the 2008 [[Nobel Prize in Physics]] to three scientists for their work in subatomic physics symmetry breaking. [[Yoichiro Nambu]], of the [[University of Chicago]], won half of the prize for the discovery of the mechanism of spontaneous broken symmetry in the context of the strong interactions, specifically [[chiral symmetry breaking]]. Physicists [[Makoto Kobayashi (physicist)|Makoto Kobayashi]] and [[Toshihide Maskawa]], of [[Kyoto University]], shared the other half of the prize for discovering the origin of the [[Explicit symmetry breaking|explicit breaking]] of CP symmetry in the weak interactions.<ref>{{cite web|author=The Nobel Foundation|title=The Nobel Prize in Physics 2008|url=http://nobelprize.org/nobel_prizes/physics/laureates/2008/index.html|work=nobelprize.org|access-date=January 15, 2008}}</ref> This origin is ultimately reliant on the Higgs mechanism, but, so far understood as a "just so" feature of Higgs couplings, not a spontaneously broken symmetry phenomenon.
     −
2008年10月7日,瑞典皇家科学院(Royal Swedish Academy of Sciences)将2008年诺贝尔物理学奖授予三位科学家,以表彰他们在亚原子物理对称性破缺方面的工作。芝加哥大学的Yoichiro Nambu获得了一半的奖金,表彰他发现了在强相互作用下对称性自发破缺的机制,特别是手性对称性破缺。京都大学(Kyoto University)物理学家小林诚(Makoto Kobayashi)和正川俊英(Toshihide Maskawa)因发现了弱相互作用中CP对称性显性破缺的起源而分享了另一半奖金。这一起源最终依赖于希格斯机制,但迄今为止被理解为希格斯耦合的“恰好如此”特征,而不是一种自发的对称破缺现象。
+
2008年10月7日,瑞典皇家科学院(Royal Swedish Academy of Sciences)将2008年诺贝尔物理学奖授予三位科学家,以表彰他们在亚原子物理对称性破缺方面的工作。芝加哥大学的Yoichiro Nambu获得了一半的奖金,表彰他发现了在强相互作用下对称性自发破缺的机制,特别是手性对称性破缺。京都大学(Kyoto University)物理学家小林诚(Makoto Kobayashi)和正川俊英(Toshihide Maskawa)因发现了弱相互作用中CP对称性显性破缺的起源而分享了另一半奖金<ref>{{cite web|author=The Nobel Foundation|title=The Nobel Prize in Physics 2008|url=http://nobelprize.org/nobel_prizes/physics/laureates/2008/index.html|work=nobelprize.org|access-date=January 15, 2008}}</ref>。这一起源最终依赖于希格斯机制,但迄今为止被理解为希格斯耦合的“恰好如此”特征,而不是一种自发的对称破缺现象。
    
==See also 参见==
 
==See also 参见==
1,068

个编辑

导航菜单