第355行: |
第355行: |
| | | |
| [[Pseudo-random number sampling]] algorithms are used to transform uniformly distributed pseudo-random numbers into numbers that are distributed according to a given [[probability distribution]]. | | [[Pseudo-random number sampling]] algorithms are used to transform uniformly distributed pseudo-random numbers into numbers that are distributed according to a given [[probability distribution]]. |
| + | |
| + | Monte Carlo methods are especially useful for simulating phenomena with significant uncertainty in inputs and systems with many coupled degrees of freedom. Areas of application include: |
| + | |
| + | 蒙特卡罗方法尤其适用于模拟输入和多自由度耦合系统中具有明显不确定性的现象。申请范围包括: |
| | | |
| [[Low-discrepancy sequences]] are often used instead of random sampling from a space as they ensure even coverage and normally have a faster order of convergence than Monte Carlo simulations using random or pseudorandom sequences. Methods based on their use are called [[quasi-Monte Carlo method]]s. | | [[Low-discrepancy sequences]] are often used instead of random sampling from a space as they ensure even coverage and normally have a faster order of convergence than Monte Carlo simulations using random or pseudorandom sequences. Methods based on their use are called [[quasi-Monte Carlo method]]s. |
第422行: |
第426行: |
| | | |
| Monte Carlo methods are especially useful for simulating phenomena with significant [[uncertainty]] in inputs and systems with many [[coupling (physics)|coupled]] degrees of freedom. Areas of application include: | | Monte Carlo methods are especially useful for simulating phenomena with significant [[uncertainty]] in inputs and systems with many [[coupling (physics)|coupled]] degrees of freedom. Areas of application include: |
− |
| |
− | Monte Carlo methods are especially useful for simulating phenomena with significant uncertainty in inputs and systems with many coupled degrees of freedom. Areas of application include:
| |
− |
| |
− | 蒙特卡罗方法尤其适用于模拟输入和多自由度耦合系统中具有明显不确定性的现象。申请范围包括:
| |
| | | |
| ===Physical sciences=== | | ===Physical sciences=== |
第440行: |
第440行: |
| | | |
| ===Engineering=== | | ===Engineering=== |
− | Monte Carlo methods are widely used in engineering for [[sensitivity analysis]] and quantitative [[probabilistic]] analysis in [[Process design (chemical engineering)|process design]]. The need arises from the interactive, co-linear and non-linear behavior of typical process simulations. For example,
| |
− |
| |
| Monte Carlo methods are widely used in engineering for sensitivity analysis and quantitative probabilistic analysis in process design. The need arises from the interactive, co-linear and non-linear behavior of typical process simulations. For example, | | Monte Carlo methods are widely used in engineering for sensitivity analysis and quantitative probabilistic analysis in process design. The need arises from the interactive, co-linear and non-linear behavior of typical process simulations. For example, |
| | | |
| 蒙特卡罗方法被广泛应用于工程设计中的敏感度分析和工艺设计中的定量概率分析。这种需求来源于典型过程模拟的交互性、共线性和非线性行为。比如说, | | 蒙特卡罗方法被广泛应用于工程设计中的敏感度分析和工艺设计中的定量概率分析。这种需求来源于典型过程模拟的交互性、共线性和非线性行为。比如说, |
| + | |
| + | Monte Carlo methods are widely used in engineering for [[sensitivity analysis]] and quantitative [[probabilistic]] analysis in [[Process design (chemical engineering)|process design]]. The need arises from the interactive, co-linear and non-linear behavior of typical process simulations. For example, |
| | | |
| * In [[microelectronics|microelectronics engineering]], Monte Carlo methods are applied to analyze correlated and uncorrelated variations in [[Analog signal|analog]] and [[Digital data|digital]] [[integrated circuits]]. | | * In [[microelectronics|microelectronics engineering]], Monte Carlo methods are applied to analyze correlated and uncorrelated variations in [[Analog signal|analog]] and [[Digital data|digital]] [[integrated circuits]]. |
第513行: |
第513行: |
| | | |
| 蒙特卡罗方法也是近似随机化和置换检验的折衷。近似随机化测试是基于所有排列的特定子集(这需要潜在的庞大的内务管理,其中排列已被考虑)。蒙特卡罗方法是基于一定数量的随机排列(如果排列被抽取两次或更频繁,精度会有轻微的损失,因为不必追踪哪些排列已经被选择)。 | | 蒙特卡罗方法也是近似随机化和置换检验的折衷。近似随机化测试是基于所有排列的特定子集(这需要潜在的庞大的内务管理,其中排列已被考虑)。蒙特卡罗方法是基于一定数量的随机排列(如果排列被抽取两次或更频繁,精度会有轻微的损失,因为不必追踪哪些排列已经被选择)。 |
| + | |
| + | {{anchor|Monte Carlo tree search}} |
| + | |
| + | A Monte Carlo approach was used for evaluating the potential value of a proposed program to help female petitioners in Wisconsin be successful in their applications for harassment and domestic abuse restraining orders. It was proposed to help women succeed in their petitions by providing them with greater advocacy thereby potentially reducing the risk of rape and physical assault. However, there were many variables in play that could not be estimated perfectly, including the effectiveness of restraining orders, the success rate of petitioners both with and without advocacy, and many others. The study ran trials that varied these variables to come up with an overall estimate of the success level of the proposed program as a whole. |
| + | |
| + | 蒙特卡洛方法被用来评估一个拟议的方案的潜在价值,以帮助威斯康星州的女性请愿者成功地申请骚扰和家庭虐待限制令。提议帮助妇女成功地提出请愿,向她们提供更多的宣传,从而有可能减少强奸和人身攻击的风险。然而,还有许多变量无法完全估计,包括限制令的有效性,上访者的成功率,无论有没有主张,以及许多其他因素。这项研究通过改变这些变量进行了试验,得出了对整个计划成功程度的总体评估。 |
| | | |
| ===Artificial intelligence for games=== | | ===Artificial intelligence for games=== |
第538行: |
第544行: |
| #Play a simulated game starting with that node. | | #Play a simulated game starting with that node. |
| #Play a simulated game starting with that node. 以该节点开始玩一个模拟游戏。 | | #Play a simulated game starting with that node. 以该节点开始玩一个模拟游戏。 |
| + | |
| + | Monte-Carlo integration works by comparing random points with the value of the function |
| + | |
| + | 蒙特卡罗积分是通过比较随机点和函数值来工作的 |
| | | |
| #Use the results of that simulated game to update the node and its ancestors. | | #Use the results of that simulated game to update the node and its ancestors. |
| #Use the results of that simulated game to update the node and its ancestors. 使用模拟游戏的结果来更新节点及其祖先。 | | #Use the results of that simulated game to update the node and its ancestors. 使用模拟游戏的结果来更新节点及其祖先。 |
| + | |
| + | Errors reduce by a factor of <math>\scriptstyle 1/\sqrt{N}</math> |
| + | |
| + | 错误减少一个因素 < math > scriptstyle 1/sqrt { n } <nowiki></math ></nowiki> |
| + | |
| The net effect, over the course of many simulated games, is that the value of a node representing a move will go up or down, hopefully corresponding to whether or not that node represents a good move. | | The net effect, over the course of many simulated games, is that the value of a node representing a move will go up or down, hopefully corresponding to whether or not that node represents a good move. |
| | | |
第554行: |
第569行: |
| | | |
| {{See also|Computer Go}} | | {{See also|Computer Go}} |
| + | |
| + | A similar approach, the quasi-Monte Carlo method, uses low-discrepancy sequences. These sequences "fill" the area better and sample the most important points more frequently, so quasi-Monte Carlo methods can often converge on the integral more quickly. |
| + | |
| + | 一个类似的方法,拟蒙特卡罗方法,使用低差异序列。这些序列能更好地“填充”区域,更频繁地采样最重要的点,因此拟蒙特卡罗方法往往能更快地收敛于积分。 |
| | | |
| ===Design and visuals=== | | ===Design and visuals=== |
| + | |
| + | Another class of methods for sampling points in a volume is to simulate random walks over it (Markov chain Monte Carlo). Such methods include the Metropolis–Hastings algorithm, Gibbs sampling, Wang and Landau algorithm, and interacting type MCMC methodologies such as the sequential Monte Carlo samplers. |
| + | |
| + | 另一类方法是模拟体积上的随机游动(马尔科夫蒙特卡洛)。这些方法包括 Metropolis-Hastings 算法、 Gibbs 抽样、 Wang 和 Landau 算法以及交互式 MCMC 方法,如序贯蒙特卡罗抽样。 |
| | | |
| Monte Carlo methods are also efficient in solving coupled integral differential equations of radiation fields and energy transport, and thus these methods have been used in [[global illumination]] computations that produce photo-realistic images of virtual 3D models, with applications in [[video game]]s, [[architecture]], [[design]], computer generated [[film]]s, and cinematic special effects.<ref>{{harvnb|Szirmay–Kalos|2008}}</ref> | | Monte Carlo methods are also efficient in solving coupled integral differential equations of radiation fields and energy transport, and thus these methods have been used in [[global illumination]] computations that produce photo-realistic images of virtual 3D models, with applications in [[video game]]s, [[architecture]], [[design]], computer generated [[film]]s, and cinematic special effects.<ref>{{harvnb|Szirmay–Kalos|2008}}</ref> |
第576行: |
第599行: |
| | | |
| 蒙特卡罗模拟通常用于评估影响不同决策方案结果的风险和不确定性。蒙特卡洛模拟允许商业风险分析师在销售量、商品和劳动力价格、利率和汇率等变量中考虑不确定性的总体影响,以及不同风险事件的影响,如合同的取消或税法的改变。 | | 蒙特卡罗模拟通常用于评估影响不同决策方案结果的风险和不确定性。蒙特卡洛模拟允许商业风险分析师在销售量、商品和劳动力价格、利率和汇率等变量中考虑不确定性的总体影响,以及不同风险事件的影响,如合同的取消或税法的改变。 |
| + | |
| + | {{See also|Monte Carlo methods in finance| Quasi-Monte Carlo methods in finance| Monte Carlo methods for option pricing| Stochastic modelling (insurance) | Stochastic asset model}} |
| | | |
| [[Monte Carlo methods in finance]] are often used to [[Corporate finance#Quantifying uncertainty|evaluate investments in projects]] at a business unit or corporate level, or other financial valuations. They can be used to model [[project management|project schedules]], where simulations aggregate estimates for worst-case, best-case, and most likely durations for each task to determine outcomes for the overall project.[https://risk.octigo.pl/] Monte Carlo methods are also used in option pricing, default risk analysis.<ref>{{Cite book|title = An Introduction to Particle Methods with Financial Applications|publisher = Springer Berlin Heidelberg|journal = Numerical Methods in Finance|date = 2012|isbn = 978-3-642-25745-2|pages = 3–49|series = Springer Proceedings in Mathematics|volume = 12|first1 = René|last1 = Carmona|first2 = Pierre|last2 = Del Moral|first3 = Peng|last3 = Hu|first4 = Nadia|last4 = Oudjane|editor-first = René A.|editor-last = Carmona|editor2-first = Pierre Del|editor2-last = Moral|editor3-first = Peng|editor3-last = Hu|editor4-first = Nadia|display-editors = 3 |editor4-last = Oudjane|doi=10.1007/978-3-642-25746-9_1|citeseerx = 10.1.1.359.7957}}</ref><ref>{{Cite book |volume = 12|doi=10.1007/978-3-642-25746-9|series = Springer Proceedings in Mathematics|year = 2012|isbn = 978-3-642-25745-2|url = https://basepub.dauphine.fr/handle/123456789/11498|title=Numerical Methods in Finance|last1=Carmona|first1=René|last2=Del Moral|first2=Pierre|last3=Hu|first3=Peng|last4=Oudjane|first4=Nadia}}</ref><ref name="kr11">{{cite book|last1 = Kroese|first1 = D. P.|last2 = Taimre|first2 = T.|last3 = Botev|first3 = Z. I. |title = Handbook of Monte Carlo Methods|year = 2011|publisher = John Wiley & Sons}}</ref> Additionally, they can be used to estimate the financial impact of medical interventions.<ref>{{Cite journal |doi = 10.1371/journal.pone.0189718|pmid = 29284026|pmc = 5746244|title = A Monte Carlo simulation approach for estimating the health and economic impact of interventions provided at a student-run clinic|journal = PLOS ONE|volume = 12|issue = 12|pages = e0189718|year = 2017|last1 = Arenas|first1 = Daniel J.|last2 = Lett|first2 = Lanair A.|last3 = Klusaritz|first3 = Heather|last4 = Teitelman|first4 = Anne M.|bibcode = 2017PLoSO..1289718A}}</ref> | | [[Monte Carlo methods in finance]] are often used to [[Corporate finance#Quantifying uncertainty|evaluate investments in projects]] at a business unit or corporate level, or other financial valuations. They can be used to model [[project management|project schedules]], where simulations aggregate estimates for worst-case, best-case, and most likely durations for each task to determine outcomes for the overall project.[https://risk.octigo.pl/] Monte Carlo methods are also used in option pricing, default risk analysis.<ref>{{Cite book|title = An Introduction to Particle Methods with Financial Applications|publisher = Springer Berlin Heidelberg|journal = Numerical Methods in Finance|date = 2012|isbn = 978-3-642-25745-2|pages = 3–49|series = Springer Proceedings in Mathematics|volume = 12|first1 = René|last1 = Carmona|first2 = Pierre|last2 = Del Moral|first3 = Peng|last3 = Hu|first4 = Nadia|last4 = Oudjane|editor-first = René A.|editor-last = Carmona|editor2-first = Pierre Del|editor2-last = Moral|editor3-first = Peng|editor3-last = Hu|editor4-first = Nadia|display-editors = 3 |editor4-last = Oudjane|doi=10.1007/978-3-642-25746-9_1|citeseerx = 10.1.1.359.7957}}</ref><ref>{{Cite book |volume = 12|doi=10.1007/978-3-642-25746-9|series = Springer Proceedings in Mathematics|year = 2012|isbn = 978-3-642-25745-2|url = https://basepub.dauphine.fr/handle/123456789/11498|title=Numerical Methods in Finance|last1=Carmona|first1=René|last2=Del Moral|first2=Pierre|last3=Hu|first3=Peng|last4=Oudjane|first4=Nadia}}</ref><ref name="kr11">{{cite book|last1 = Kroese|first1 = D. P.|last2 = Taimre|first2 = T.|last3 = Botev|first3 = Z. I. |title = Handbook of Monte Carlo Methods|year = 2011|publisher = John Wiley & Sons}}</ref> Additionally, they can be used to estimate the financial impact of medical interventions.<ref>{{Cite journal |doi = 10.1371/journal.pone.0189718|pmid = 29284026|pmc = 5746244|title = A Monte Carlo simulation approach for estimating the health and economic impact of interventions provided at a student-run clinic|journal = PLOS ONE|volume = 12|issue = 12|pages = e0189718|year = 2017|last1 = Arenas|first1 = Daniel J.|last2 = Lett|first2 = Lanair A.|last3 = Klusaritz|first3 = Heather|last4 = Teitelman|first4 = Anne M.|bibcode = 2017PLoSO..1289718A}}</ref> |
− |
| |
− | Monte Carlo methods in finance are often used to evaluate investments in projects at a business unit or corporate level, or other financial valuations. They can be used to model project schedules, where simulations aggregate estimates for worst-case, best-case, and most likely durations for each task to determine outcomes for the overall project.[https://risk.octigo.pl/] Monte Carlo methods are also used in option pricing, default risk analysis. Additionally, they can be used to estimate the financial impact of medical interventions.
| |
− |
| |
− | 金融领域的蒙特卡罗方法通常用于评估一个业务单位或公司层面的项目投资,或其他金融估值。它们可以用于对项目进度表进行建模,模拟对每个任务的最坏情况、最好情况和最可能的持续时间进行聚合估计,以确定整个项目的结果。蒙特卡罗方法也用于期权定价,违约风险分析 https://risk.octigo.pl/。此外,它们还可以用来评估医疗干预措施的财务影响。
| |
| ===Law=== | | ===Law=== |
| | | |
| A Monte Carlo approach was used for evaluating the potential value of a proposed program to help female petitioners in Wisconsin be successful in their applications for [[Harassment Restraining Order|harassment]] and [[Domestic Abuse Restraining Order|domestic abuse restraining orders]]. It was proposed to help women succeed in their petitions by providing them with greater advocacy thereby potentially reducing the risk of [[rape]] and [[physical assault]]. However, there were many variables in play that could not be estimated perfectly, including the effectiveness of restraining orders, the success rate of petitioners both with and without advocacy, and many others. The study ran trials that varied these variables to come up with an overall estimate of the success level of the proposed program as a whole.<ref name="montecarloanalysis">{{cite web|url=http://legalaidresearch.org/wp-content/uploads/Research-Increasing-Access-to-REstraining-Order-for-Low-Income-Victims-of-DV-A-Cost-Benefit-Analysis-of-the-Proposed-Domestic-Abuse-Grant-Program.pdf| title=Increasing Access to Restraining Orders for Low Income Victims of Domestic Violence: A Cost-Benefit Analysis of the Proposed Domestic Abuse Grant Program |publisher=[[State Bar of Wisconsin]] |date=December 2006 |accessdate=2016-12-12|last1=Elwart|first1=Liz|last2=Emerson|first2=Nina|last3=Enders|first3=Christina|last4=Fumia|first4=Dani|last5=Murphy|first5=Kevin|url-status=dead|archive-url=https://web.archive.org/web/20181106220526/https://legalaidresearch.org/wp-content/uploads/Research-Increasing-Access-to-REstraining-Order-for-Low-Income-Victims-of-DV-A-Cost-Benefit-Analysis-of-the-Proposed-Domestic-Abuse-Grant-Program.pdf|archive-date=6 November 2018}}</ref> | | A Monte Carlo approach was used for evaluating the potential value of a proposed program to help female petitioners in Wisconsin be successful in their applications for [[Harassment Restraining Order|harassment]] and [[Domestic Abuse Restraining Order|domestic abuse restraining orders]]. It was proposed to help women succeed in their petitions by providing them with greater advocacy thereby potentially reducing the risk of [[rape]] and [[physical assault]]. However, there were many variables in play that could not be estimated perfectly, including the effectiveness of restraining orders, the success rate of petitioners both with and without advocacy, and many others. The study ran trials that varied these variables to come up with an overall estimate of the success level of the proposed program as a whole.<ref name="montecarloanalysis">{{cite web|url=http://legalaidresearch.org/wp-content/uploads/Research-Increasing-Access-to-REstraining-Order-for-Low-Income-Victims-of-DV-A-Cost-Benefit-Analysis-of-the-Proposed-Domestic-Abuse-Grant-Program.pdf| title=Increasing Access to Restraining Orders for Low Income Victims of Domestic Violence: A Cost-Benefit Analysis of the Proposed Domestic Abuse Grant Program |publisher=[[State Bar of Wisconsin]] |date=December 2006 |accessdate=2016-12-12|last1=Elwart|first1=Liz|last2=Emerson|first2=Nina|last3=Enders|first3=Christina|last4=Fumia|first4=Dani|last5=Murphy|first5=Kevin|url-status=dead|archive-url=https://web.archive.org/web/20181106220526/https://legalaidresearch.org/wp-content/uploads/Research-Increasing-Access-to-REstraining-Order-for-Low-Income-Victims-of-DV-A-Cost-Benefit-Analysis-of-the-Proposed-Domestic-Abuse-Grant-Program.pdf|archive-date=6 November 2018}}</ref> |
− |
| |
− | A Monte Carlo approach was used for evaluating the potential value of a proposed program to help female petitioners in Wisconsin be successful in their applications for harassment and domestic abuse restraining orders. It was proposed to help women succeed in their petitions by providing them with greater advocacy thereby potentially reducing the risk of rape and physical assault. However, there were many variables in play that could not be estimated perfectly, including the effectiveness of restraining orders, the success rate of petitioners both with and without advocacy, and many others. The study ran trials that varied these variables to come up with an overall estimate of the success level of the proposed program as a whole.
| |
− |
| |
− | 蒙特卡洛方法被用来评估一个拟议的方案的潜在价值,以帮助威斯康星州的女性请愿者成功地申请骚扰和家庭虐待限制令。提议帮助妇女成功地提出请愿,向她们提供更多的宣传,从而有可能减少强奸和人身攻击的风险。然而,还有许多变量无法完全估计,包括限制令的有效性,上访者的成功率,无论有没有主张,以及许多其他因素。这项研究通过改变这些变量进行了试验,得出了对整个计划成功程度的总体评估。
| |
| | | |
| ==Use in mathematics== | | ==Use in mathematics== |
第600行: |
第617行: |
| === Integration === | | === Integration === |
| | | |
− | {{Main|Monte Carlo integration}}[[File:Monte-carlo2.gif|thumb|Monte-Carlo integration works by comparing random points with the value of the functionMonte-Carlo integration works by comparing random points with the value of the function | + | {{Main|Monte Carlo integration}}[[File:Monte-carlo2.gif|thumb|Monte-Carlo integration works by comparing random points with the value of the function|链接=Special:FilePath/Monte-carlo2.gif]] |
| | | |
− | 蒙特卡罗积分是通过比较随机点和函数值来工作的|链接=Special:FilePath/Monte-carlo2.gif]]
| + | [[File:Monte-Carlo method (errors).png|thumb|Errors reduce by a factor of <math>\scriptstyle 1/\sqrt{N}</math>|链接=Special:FilePath/Monte-Carlo_method_(errors).png]] |
− | | |
− | [[File:Monte-Carlo method (errors).png|thumb|Errors reduce by a factor of <math>\scriptstyle 1/\sqrt{N}</math>Errors reduce by a factor of <math>\scriptstyle 1/\sqrt{N}</math> | |
− | | |
− | 错误减少一个因素 < math > scriptstyle 1/sqrt { n } <nowiki></math ></nowiki>|链接=Special:FilePath/Monte-Carlo_method_(errors).png]]
| |
| | | |
| Deterministic [[numerical integration]] algorithms work well in a small number of dimensions, but encounter two problems when the functions have many variables. First, the number of function evaluations needed increases rapidly with the number of dimensions. For example, if 10 evaluations provide adequate accuracy in one dimension, then [[googol|10<sup>100</sup>]] points are needed for 100 dimensions—far too many to be computed. This is called the [[curse of dimensionality]]. Second, the boundary of a multidimensional region may be very complicated, so it may not be feasible to reduce the problem to an [[iterated integral]].<ref name="Press">{{harvnb|Press|Teukolsky|Vetterling|Flannery|1996}}</ref> 100 [[dimension]]s is by no means unusual, since in many physical problems, a "dimension" is equivalent to a [[degrees of freedom (physics and chemistry)|degree of freedom]]. | | Deterministic [[numerical integration]] algorithms work well in a small number of dimensions, but encounter two problems when the functions have many variables. First, the number of function evaluations needed increases rapidly with the number of dimensions. For example, if 10 evaluations provide adequate accuracy in one dimension, then [[googol|10<sup>100</sup>]] points are needed for 100 dimensions—far too many to be computed. This is called the [[curse of dimensionality]]. Second, the boundary of a multidimensional region may be very complicated, so it may not be feasible to reduce the problem to an [[iterated integral]].<ref name="Press">{{harvnb|Press|Teukolsky|Vetterling|Flannery|1996}}</ref> 100 [[dimension]]s is by no means unusual, since in many physical problems, a "dimension" is equivalent to a [[degrees of freedom (physics and chemistry)|degree of freedom]]. |
第623行: |
第636行: |
| | | |
| A similar approach, the [[quasi-Monte Carlo method]], uses [[low-discrepancy sequence]]s. These sequences "fill" the area better and sample the most important points more frequently, so quasi-Monte Carlo methods can often converge on the integral more quickly. | | A similar approach, the [[quasi-Monte Carlo method]], uses [[low-discrepancy sequence]]s. These sequences "fill" the area better and sample the most important points more frequently, so quasi-Monte Carlo methods can often converge on the integral more quickly. |
− |
| |
− | A similar approach, the quasi-Monte Carlo method, uses low-discrepancy sequences. These sequences "fill" the area better and sample the most important points more frequently, so quasi-Monte Carlo methods can often converge on the integral more quickly.
| |
− |
| |
− | 一个类似的方法,拟蒙特卡罗方法,使用低差异序列。这些序列能更好地“填充”区域,更频繁地采样最重要的点,因此拟蒙特卡罗方法往往能更快地收敛于积分。
| |
| | | |
| Another class of methods for sampling points in a volume is to simulate random walks over it ([[Markov chain Monte Carlo]]). Such methods include the [[Metropolis–Hastings algorithm]], [[Gibbs sampling]], [[Wang and Landau algorithm]], and interacting type MCMC methodologies such as the [[Particle filter|sequential Monte Carlo]] samplers.<ref>{{Cite journal|title = Sequential Monte Carlo samplers|journal = Journal of the Royal Statistical Society, Series B|doi=10.1111/j.1467-9868.2006.00553.x|volume=68|issue = 3|pages=411–436|year = 2006|last1 = Del Moral|first1 = Pierre|last2 = Doucet|first2 = Arnaud|last3 = Jasra|first3 = Ajay|arxiv = cond-mat/0212648|s2cid = 12074789}}</ref> | | Another class of methods for sampling points in a volume is to simulate random walks over it ([[Markov chain Monte Carlo]]). Such methods include the [[Metropolis–Hastings algorithm]], [[Gibbs sampling]], [[Wang and Landau algorithm]], and interacting type MCMC methodologies such as the [[Particle filter|sequential Monte Carlo]] samplers.<ref>{{Cite journal|title = Sequential Monte Carlo samplers|journal = Journal of the Royal Statistical Society, Series B|doi=10.1111/j.1467-9868.2006.00553.x|volume=68|issue = 3|pages=411–436|year = 2006|last1 = Del Moral|first1 = Pierre|last2 = Doucet|first2 = Arnaud|last3 = Jasra|first3 = Ajay|arxiv = cond-mat/0212648|s2cid = 12074789}}</ref> |
− |
| |
− | Another class of methods for sampling points in a volume is to simulate random walks over it (Markov chain Monte Carlo). Such methods include the Metropolis–Hastings algorithm, Gibbs sampling, Wang and Landau algorithm, and interacting type MCMC methodologies such as the sequential Monte Carlo samplers.
| |
− |
| |
− | 另一类方法是模拟体积上的随机游动(马尔科夫蒙特卡洛)。这些方法包括 Metropolis-Hastings 算法、 Gibbs 抽样、 Wang 和 Landau 算法以及交互式 MCMC 方法,如序贯蒙特卡罗抽样。
| |
| | | |
| === Simulation and optimization === | | === Simulation and optimization === |
第651行: |
第656行: |
| ===Inverse problems=== | | ===Inverse problems=== |
| | | |
− | Probabilistic formulation of [[inverse problem]]s leads to the definition of a [[probability distribution]] in the model space. This probability distribution combines [[prior probability|prior]] information with new information obtained by measuring some observable parameters (data). | + | Probabilistic formulation of [[inverse problem]]s leads to the definition of a [[probability distribution]] in the model space. This probability distribution combines [[prior probability|prior]] information with new information obtained by measuring some observable parameters (data). As, in the general case, the theory linking data with model parameters is nonlinear, the posterior probability in the model space may not be easy to describe (it may be multimodal, some moments may not be defined, etc.). |
− | | |
− | Probabilistic formulation of inverse problems leads to the definition of a probability distribution in the model space. This probability distribution combines prior information with new information obtained by measuring some observable parameters (data).
| |
− | | |
− | 反问题的概率公式导致了模型空间中概率分布的定义。该概率分布将先前的信息与通过测量一些可观测的参数(数据)获得的新信息结合起来。
| |
− | | |
− | As, in the general case, the theory linking data with model parameters is nonlinear, the posterior probability in the model space may not be easy to describe (it may be multimodal, some moments may not be defined, etc.). | |
| | | |
− | As, in the general case, the theory linking data with model parameters is nonlinear, the posterior probability in the model space may not be easy to describe (it may be multimodal, some moments may not be defined, etc.). | + | Probabilistic formulation of inverse problems leads to the definition of a probability distribution in the model space. This probability distribution combines prior information with new information obtained by measuring some observable parameters (data).As, in the general case, the theory linking data with model parameters is nonlinear, the posterior probability in the model space may not be easy to describe (it may be multimodal, some moments may not be defined, etc.). |
| | | |
− | 因为,在一般情况下,连接数据和模型参数的理论是非线性的,模型空间中的后验概率可能不容易描述(它可能是多模态的,一些矩可能没有定义,等等。).
| + | 反问题的概率公式导致了模型空间中概率分布的定义。该概率分布将先前的信息与通过测量一些可观测的参数(数据)获得的新信息结合起来。因为,在一般情况下,连接数据和模型参数的理论是非线性的,模型空间中的后验概率可能不容易描述(它可能是多模态的,一些矩可能没有定义,等等。). |
| | | |
| When analyzing an inverse problem, obtaining a maximum likelihood model is usually not sufficient, as we normally also wish to have information on the resolution power of the data. In the general case we may have many model parameters, and an inspection of the [[marginal probability]] densities of interest may be impractical, or even useless. But it is possible to pseudorandomly generate a large collection of models according to the [[posterior probability distribution]] and to analyze and display the models in such a way that information on the relative likelihoods of model properties is conveyed to the spectator. This can be accomplished by means of an efficient Monte Carlo method, even in cases where no explicit formula for the ''a priori'' distribution is available. | | When analyzing an inverse problem, obtaining a maximum likelihood model is usually not sufficient, as we normally also wish to have information on the resolution power of the data. In the general case we may have many model parameters, and an inspection of the [[marginal probability]] densities of interest may be impractical, or even useless. But it is possible to pseudorandomly generate a large collection of models according to the [[posterior probability distribution]] and to analyze and display the models in such a way that information on the relative likelihoods of model properties is conveyed to the spectator. This can be accomplished by means of an efficient Monte Carlo method, even in cases where no explicit formula for the ''a priori'' distribution is available. |