更改

跳到导航 跳到搜索
删除10,270字节 、 2021年7月31日 (六) 19:12
无编辑摘要
第27行: 第27行:  
Despite its conceptual and algorithmic simplicity, the computational cost associated with a Monte Carlo simulation can be staggeringly high. In general the method requires many samples to get a good approximation, which may incurs an arbitrarily large total runtime if the processing time of a single sample is high. Although this is a severe limitation in very complex problems, the embarrassingly parallel nature of the algorithm allows this large cost to be reduced (perhaps to a feasible level) through parallel computing strategies in local processors, clusters, cloud computing, GPU, FPGA etc.
 
Despite its conceptual and algorithmic simplicity, the computational cost associated with a Monte Carlo simulation can be staggeringly high. In general the method requires many samples to get a good approximation, which may incurs an arbitrarily large total runtime if the processing time of a single sample is high. Although this is a severe limitation in very complex problems, the embarrassingly parallel nature of the algorithm allows this large cost to be reduced (perhaps to a feasible level) through parallel computing strategies in local processors, clusters, cloud computing, GPU, FPGA etc.
   −
尽管其概念和算法简单,但与蒙特卡罗模拟相关的计算成本却是高的惊人。一般情况下,该方法需要大量的样本来获得良好的近似,如果单个样本的处理时间较长,可能会导致总运行时间长度难以控制。【11】尽管在非常复杂的问题中,这是一个严重的限制,但该算法令人尴尬的并行性质允许通过本地处理器、集群、云计算、GPU、FPGA等的并行计算策略来降低高昂的成本(或许降低到可以接受的水平上)。【12-15】
+
尽管其概念和算法简单,但与蒙特卡罗模拟相关的计算成本却是高的惊人。一般情况下,该方法需要大量的样本来获得良好的近似,如果单个样本的处理时间较长,可能会导致总运行时间长度难以控制。<ref>Shonkwiler, R. W.; Mendivil, F. (2009). ''Explorations in Monte Carlo Methods''. Springer.</ref>尽管在非常复杂的问题中,这是一个严重的限制,但该算法令人尴尬的并行性质允许通过本地处理器、集群、云计算、GPU、FPGA等的并行计算策略来降低高昂的成本(或许降低到可以接受的水平上)。<ref>Atanassova, E.; Gurov, T.; Karaivanova, A.; Ivanovska, S.; Durchova, M.; Dimitrov, D. (2016). "On the parallelization approaches for Intel MIC architecture". ''AIP Conference Proceedings''. '''1773''': 070001. doi:10.1063/1.4964983.</ref><ref>Cunha Jr, A.; Nasser, R.; Sampaio, R.; Lopes, H.; Breitman, K. (2014). "Uncertainty quantification through the Monte Carlo method in a cloud computing setting". ''Computer Physics Communications''. '''185'''(5): 1355–1363. doi:10.1016/j.cpc.2014.01.006.</ref><ref>Wei, J.; Kruis, F.E. (2013). "A GPU-based parallelized Monte-Carlo method for particle coagulation using an acceptance–rejection strategy". ''Chemical Engineering Science''. '''104''': 451–459. doi:10.1016/j.ces.2013.08.008.</ref><ref>Lin, Y.; Wang, F.; Liu, B. (2018). "Random number generators for large-scale parallel Monte Carlo simulations on FPGA". ''Journal of Computational Physics''. '''360''': 93–103. doi:10.1016/j.jcp.2018.01.029.</ref>
    
== Overview 概述 ==
 
== Overview 概述 ==
第63行: 第63行:  
蒙特卡罗方法应用于估计。
 
蒙特卡罗方法应用于估计。
   −
For example, consider a [[circular sector#Quadrant|quadrant (circular sector)]] inscribed in a [[unit square]]. Given that the ratio of their areas is {{sfrac|{{pi}}|4}}, the value of [[pi|{{pi}}]] can be approximated using a Monte Carlo method:{{sfn|Kalos|Whitlock|2008}}
+
For example, consider a quadrant (circular sector) inscribed in a unit square. Given that the ratio of their areas is π/4, the value of π can be approximated using a Monte Carlo method:<ref name=":9">Kalos, Malvin H.; Whitlock, Paula A. (2008). ''Monte Carlo Methods''. Wiley-VCH. ISBN <bdi>978-3-527-40760-6</bdi>.</ref>
   −
For example, consider a quadrant (circular sector) inscribed in a unit square. Given that the ratio of their areas is π/4, the value of π can be approximated using a Monte Carlo method:【16】
+
例如,考虑一个单位正方形内嵌的四分之一圆。考虑到它们的面积比是π/4,π的值可以用蒙特卡罗方法来近似:<ref name=":9" />
 
  −
例如,考虑一个单位正方形内嵌的四分之一圆。考虑到它们的面积比是π/4,π的值可以用蒙特卡罗方法来近似:
      
# Draw a square, then [[inscribed figure|inscribe]] a quadrant within it
 
# Draw a square, then [[inscribed figure|inscribe]] a quadrant within it
第87行: 第85行:  
3、计算四分之一圆内的点数,即满足距离原点小于1的
 
3、计算四分之一圆内的点数,即满足距离原点小于1的
   −
# The ratio of the inside-count and the total-sample-count is an estimate of the ratio of the two areas, {{sfrac|{{pi}}|4}}. Multiply the result by 4 to estimate {{pi}}.
   
# The ratio of the inside-count and the total-sample-count is an estimate of the ratio of the two areas, π/4. Multiply the result by 4 to estimate π.
 
# The ratio of the inside-count and the total-sample-count is an estimate of the ratio of the two areas, π/4. Multiply the result by 4 to estimate π.
   第94行: 第91行:  
4、四分之一圆内部计数与总样本计数之比是两个区域之比的估计值,π/4。把结果乘以4就可以估算出π的值。
 
4、四分之一圆内部计数与总样本计数之比是两个区域之比的估计值,π/4。把结果乘以4就可以估算出π的值。
   −
In this procedure the domain of inputs is the square that circumscribes the quadrant.  We generate random inputs by scattering grains over the square then perform a computation on each input (test whether it falls within the quadrant). Aggregating the results yields our final result, the approximation of {{pi}}.
+
In this procedure the domain of inputs is the square that circumscribes the quadrant.  We generate random inputs by scattering grains over the square then perform a computation on each input (test whether it falls within the quadrant). Aggregating the results yields our final result, the approximation of π .
 
  −
In this procedure the domain of inputs is the square that circumscribes the quadrant.  We generate random inputs by scattering grains over the square then perform a computation on each input (test whether it falls within the quadrant). Aggregating the results yields our final result, the approximation of .
      
在这个过程中,输入域是限定四分之一圆的正方形。我们通过将颗粒散射到正方形上来产生随机输入,然后对每个输入执行计算(测试它是否在四分之一圆内)。汇总这些结果会产生最终的结果—π的近似值。
 
在这个过程中,输入域是限定四分之一圆的正方形。我们通过将颗粒散射到正方形上来产生随机输入,然后对每个输入执行计算(测试它是否在四分之一圆内)。汇总这些结果会产生最终的结果—π的近似值。
第128行: 第123行:  
An early variant of the Monte Carlo method was devised to solve the Buffon's needle problem, in which  can be estimated by dropping needles on a floor made of parallel equidistant strips. In the 1930s, Enrico Fermi first experimented with the Monte Carlo method while studying neutron diffusion, but he did not publish this work.  
 
An early variant of the Monte Carlo method was devised to solve the Buffon's needle problem, in which  can be estimated by dropping needles on a floor made of parallel equidistant strips. In the 1930s, Enrico Fermi first experimented with the Monte Carlo method while studying neutron diffusion, but he did not publish this work.  
   −
蒙特卡罗方法的早期变种被设计来解决 '''布丰投针 Buffon's Needle Problem'''问题,在布丰投针问题中,π可以通过将针落在由平行等距条组成的地板上来估计。20世纪30年代,'''恩里科·费米 Enrico Fermi'''在研究中子扩散时首次尝试了蒙特卡罗方法,但他没有发表这项工作。【17】
+
蒙特卡罗方法的早期变种被设计来解决 '''布丰投针 Buffon's Needle Problem'''问题,在布丰投针问题中,π可以通过将针落在由平行等距条组成的地板上来估计。20世纪30年代,'''恩里科·费米 Enrico Fermi'''在研究中子扩散时首次尝试了蒙特卡罗方法,但他没有发表这项工作。<ref name=":10">Metropolis, N. (1987). "The beginning of the Monte Carlo method" (PDF). ''Los Alamos Science'' (1987 Special Issue dedicated to Stanislaw Ulam): 125–130.</ref>
 
  −
In the late 1940s, [[Stanislaw Ulam]] invented the modern version of the Markov Chain Monte Carlo method while he was working on nuclear weapons projects at the [[Los Alamos National Laboratory]]. Immediately after Ulam's breakthrough, [[John von Neumann]] understood its importance. Von Neumann programmed the [[ENIAC]] computer to perform Monte Carlo calculations. In 1946, nuclear weapons physicists at Los Alamos were investigating neutron diffusion in fissionable material.{{sfn|Metropolis|1987}} Despite having most of the necessary data, such as the average distance a neutron would travel in a substance before it collided with an atomic nucleus and how much energy the neutron was likely to give off following a collision, the Los Alamos physicists were unable to solve the problem using conventional, deterministic mathematical methods. Ulam proposed using random experiments. He recounts his inspiration as follows:
      
In the late 1940s, Stanislaw Ulam invented the modern version of the Markov Chain Monte Carlo method while he was working on nuclear weapons projects at the Los Alamos National Laboratory. Immediately after Ulam's breakthrough, John von Neumann understood its importance. Von Neumann programmed the ENIAC computer to perform Monte Carlo calculations. In 1946, nuclear weapons physicists at Los Alamos were investigating neutron diffusion in fissionable material. Despite having most of the necessary data, such as the average distance a neutron would travel in a substance before it collided with an atomic nucleus and how much energy the neutron was likely to give off following a collision, the Los Alamos physicists were unable to solve the problem using conventional, deterministic mathematical methods. Ulam proposed using random experiments. He recounts his inspiration as follows:
 
In the late 1940s, Stanislaw Ulam invented the modern version of the Markov Chain Monte Carlo method while he was working on nuclear weapons projects at the Los Alamos National Laboratory. Immediately after Ulam's breakthrough, John von Neumann understood its importance. Von Neumann programmed the ENIAC computer to perform Monte Carlo calculations. In 1946, nuclear weapons physicists at Los Alamos were investigating neutron diffusion in fissionable material. Despite having most of the necessary data, such as the average distance a neutron would travel in a substance before it collided with an atomic nucleus and how much energy the neutron was likely to give off following a collision, the Los Alamos physicists were unable to solve the problem using conventional, deterministic mathematical methods. Ulam proposed using random experiments. He recounts his inspiration as follows:
   −
20世纪40年代末,'''斯坦尼斯拉夫·乌拉姆 Stanislaw Ulam'''在洛斯阿拉莫斯国家实验室研究核武器项目时,发明了现代版的马尔可夫链蒙特卡罗方法。在乌拉姆的突破之后,'''约翰·冯·诺伊曼 John von Neumann'''立即意识到了它的重要性。冯·诺伊曼为ENIAC(人类第一台电子数字积分计算机)编写了程序来进行蒙特卡罗计算。1946年,洛斯阿拉莫斯的核武器物理学家正在研究中子在可裂变材料中的扩散。【17】尽管拥有大部分必要的数据,例如中子在与原子核碰撞之前在物质中的平均运行距离,以及碰撞后中子可能释放出多少能量,但洛斯阿拉莫斯的物理学家们无法用传统的、确定性的数学方法解决这个问题。此时乌拉姆建议使用随机实验。他后来回忆当初灵感产生过程:
+
20世纪40年代末,'''斯坦尼斯拉夫·乌拉姆 Stanislaw Ulam'''在洛斯阿拉莫斯国家实验室研究核武器项目时,发明了现代版的马尔可夫链蒙特卡罗方法。在乌拉姆的突破之后,'''约翰·冯·诺伊曼 John von Neumann'''立即意识到了它的重要性。冯·诺伊曼为ENIAC(人类第一台电子数字积分计算机)编写了程序来进行蒙特卡罗计算。1946年,洛斯阿拉莫斯的核武器物理学家正在研究中子在可裂变材料中的扩散。<ref name=":10" />尽管拥有大部分必要的数据,例如中子在与原子核碰撞之前在物质中的平均运行距离,以及碰撞后中子可能释放出多少能量,但洛斯阿拉莫斯的物理学家们无法用传统的、确定性的数学方法解决这个问题。此时乌拉姆建议使用随机实验。他后来回忆当初灵感产生过程:
    
The first thoughts and attempts I made to practice [the Monte Carlo Method] were suggested by a question which occurred to me in 1946 as I was convalescing from an illness and playing solitaires. The question was what are the chances that a Canfield solitaire laid out with 52 cards will come out successfully? After spending a lot of time trying to estimate them by pure combinatorial calculations, I wondered whether a more practical method than "abstract thinking" might not be to lay it out say one hundred times and simply observe and count the number of successful plays. This was already possible to envisage with the beginning of the new era of fast computers, and I immediately thought of problems of neutron diffusion and other questions of mathematical physics, and more generally how to change processes described by certain differential equations into an equivalent form interpretable as a succession of random operations. Later [in 1946], I described the idea to John von Neumann, and we began to plan actual calculations.
 
The first thoughts and attempts I made to practice [the Monte Carlo Method] were suggested by a question which occurred to me in 1946 as I was convalescing from an illness and playing solitaires. The question was what are the chances that a Canfield solitaire laid out with 52 cards will come out successfully? After spending a lot of time trying to estimate them by pure combinatorial calculations, I wondered whether a more practical method than "abstract thinking" might not be to lay it out say one hundred times and simply observe and count the number of successful plays. This was already possible to envisage with the beginning of the new era of fast computers, and I immediately thought of problems of neutron diffusion and other questions of mathematical physics, and more generally how to change processes described by certain differential equations into an equivalent form interpretable as a succession of random operations. Later [in 1946], I described the idea to John von Neumann, and we began to plan actual calculations.
   −
我最初构想和尝试蒙特卡洛法是在1946年,当时我正从疾病中康复,时常玩单人纸牌游戏。那时我会思考这样一个问题:一盘52张的加菲尔德纸牌成功出牌的几率有多大?在花了大量时间尝试通过纯粹的组合计算来估计它们之后,我想知道是否有一种比“抽象思维”更实际的方法,可能不是将它展开100次,然后简单地观察和计算成功的游戏数量。在快速计算机新时代开始时,这已经是可以想象的了,我立刻想到了中子扩散和其他数学物理的问题,以及更一般的情形—如何将由某些微分方程描述的过程转换成可解释为一系列随机操作的等价形式。后来(1946年),我向约翰·冯·诺伊曼描述了这个想法,然后我们开始计划实际的计算。【18】
+
我最初构想和尝试蒙特卡洛法是在1946年,当时我正从疾病中康复,时常玩单人纸牌游戏。那时我会思考这样一个问题:一盘52张的加菲尔德纸牌成功出牌的几率有多大?在花了大量时间尝试通过纯粹的组合计算来估计它们之后,我想知道是否有一种比“抽象思维”更实际的方法,可能不是将它展开100次,然后简单地观察和计算成功的游戏数量。在快速计算机新时代开始时,这已经是可以想象的了,我立刻想到了中子扩散和其他数学物理的问题,以及更一般的情形—如何将由某些微分方程描述的过程转换成可解释为一系列随机操作的等价形式。后来(1946年),我向约翰·冯·诺伊曼描述了这个想法,然后我们开始计划实际的计算。<ref>Eckhardt, Roger (1987). "Stan Ulam, John von Neumann, and the Monte Carlo method" (PDF). ''Los Alamos Science'' (15): 131–137.</ref>
 
  −
Being secret, the work of von Neumann and Ulam required a code name.{{sfn|Mazhdrakov|Benov|Valkanov|2018|p=250}} A colleague of von Neumann and Ulam, [[Nicholas Metropolis]], suggested using the name ''Monte Carlo'', which refers to the [[Monte Carlo Casino]] in [[Monaco]] where Ulam's uncle would borrow money from relatives to gamble.{{sfn|Metropolis|1987}} Using [[A Million Random Digits with 100,000 Normal Deviates|lists of "truly random" random numbers]] was extremely slow, but von Neumann developed a way to calculate [[pseudorandom number]]s, using the [[middle-square method]]. Though this method has been criticized as crude, von Neumann was aware of this: he justified it as being faster than any other method at his disposal, and also noted that when it went awry it did so obviously, unlike methods that could be subtly incorrect.<ref>{{cite book |last = Peragine |first = Michael |title = The Universal Mind: The Evolution of Machine Intelligence and Human Psychology |year = 2013 |publisher = Xiphias Press |url = https://books.google.com/books?id=Dvb0DAAAQBAJ&q=he+justified+it+as+being+faster+than+any+other+method+at+his+disposal,+and+also+noted+that+when+it+went+awry+it+did+so+obviously,+unlike+methods+that+could+be+subtly+incorrect.&pg=PT201 |access-date = 2018-12-17 }}</ref>
      
Being secret, the work of von Neumann and Ulam required a code name. A colleague of von Neumann and Ulam, Nicholas Metropolis, suggested using the name Monte Carlo, which refers to the Monte Carlo Casino in Monaco where Ulam's uncle would borrow money from relatives to gamble. Using lists of "truly random" random numbers was extremely slow, but von Neumann developed a way to calculate pseudorandom numbers, using the middle-square method. Though this method has been criticized as crude, von Neumann was aware of this: he justified it as being faster than any other method at his disposal, and also noted that when it went awry it did so obviously, unlike methods that could be subtly incorrect.
 
Being secret, the work of von Neumann and Ulam required a code name. A colleague of von Neumann and Ulam, Nicholas Metropolis, suggested using the name Monte Carlo, which refers to the Monte Carlo Casino in Monaco where Ulam's uncle would borrow money from relatives to gamble. Using lists of "truly random" random numbers was extremely slow, but von Neumann developed a way to calculate pseudorandom numbers, using the middle-square method. Though this method has been criticized as crude, von Neumann was aware of this: he justified it as being faster than any other method at his disposal, and also noted that when it went awry it did so obviously, unlike methods that could be subtly incorrect.
   −
冯 · 诺依曼和乌拉姆的工作是秘密进行的,需要一个代号。【19】冯 · 诺依曼和乌拉姆的一位同事,'''尼古拉斯·梅特罗波利斯 Nicholas Metropolis'''建议使用蒙特卡洛这个名字,这个名字指的是摩纳哥的蒙特卡洛赌场,乌拉姆的叔叔会和亲戚借钱然后去那里赌博。【17】使用“真正随机”的随机数列表是非常慢的,然而冯 · 诺依曼使用'''平方取中法 Middle-Square Method'''开发了一种计算伪随机数生成器的方法。虽然许多人一直批评这种方法较为粗糙原始,但是冯 · 诺依曼也意识到这一点:他证明这种方法比任何其他方法都快,并指出当它出错时,人们可以轻易发现,不像其他方法产生的错误可能会不易察觉。<ref name=":9" />【20】
+
冯 · 诺依曼和乌拉姆的工作是秘密进行的,需要一个代号。<ref>Mazhdrakov, Metodi; Benov, Dobriyan; Valkanov, Nikolai (2018). ''The Monte Carlo Method. Engineering Applications''. ACMO Academic Press. p. 250. ISBN <bdi>978-619-90684-3-4</bdi>.</ref> 冯 · 诺依曼和乌拉姆的一位同事,'''尼古拉斯·梅特罗波利斯 Nicholas Metropolis'''建议使用蒙特卡洛这个名字,这个名字指的是摩纳哥的蒙特卡洛赌场,乌拉姆的叔叔会和亲戚借钱然后去那里赌博。<ref name=":10" />使用“真正随机”的随机数列表是非常慢的,然而冯 · 诺依曼使用'''平方取中法 Middle-Square Method'''开发了一种计算伪随机数生成器的方法。虽然许多人一直批评这种方法较为粗糙原始,但是冯 · 诺依曼也意识到这一点:他证明这种方法比任何其他方法都快,并指出当它出错时,人们可以轻易发现,不像其他方法产生的错误可能会不易察觉。<ref>Peragine, Michael (2013). ''The Universal Mind: The Evolution of Machine Intelligence and Human Psychology''. Xiphias Press. Retrieved 2018-12-17.</ref>
 
  −
Monte Carlo methods were central to the [[simulation]]s required for the [[Manhattan Project]], though severely limited by the computational tools at the time. In the 1950s they were used at [[Los Alamos National Laboratory|Los Alamos]] for early work relating to the development of the [[hydrogen bomb]], and became popularized in the fields of [[physics]], [[physical chemistry]], and [[operations research]]. The [[Rand Corporation]] and the [[U.S. Air Force]] were two of the major organizations responsible for funding and disseminating information on Monte Carlo methods during this time, and they began to find a wide application in many different fields.
      
Monte Carlo methods were central to the simulations required for the Manhattan Project, though severely limited by the computational tools at the time. In the 1950s they were used at Los Alamos for early work relating to the development of the hydrogen bomb, and became popularized in the fields of physics, physical chemistry, and operations research. The Rand Corporation and the U.S. Air Force were two of the major organizations responsible for funding and disseminating information on Monte Carlo methods during this time, and they began to find a wide application in many different fields.
 
Monte Carlo methods were central to the simulations required for the Manhattan Project, though severely limited by the computational tools at the time. In the 1950s they were used at Los Alamos for early work relating to the development of the hydrogen bomb, and became popularized in the fields of physics, physical chemistry, and operations research. The Rand Corporation and the U.S. Air Force were two of the major organizations responsible for funding and disseminating information on Monte Carlo methods during this time, and they began to find a wide application in many different fields.
    
尽管受到当时的计算工具严重限制,蒙特卡洛方法依然是'''曼哈顿计划 Manhattan Project'''所需模拟的核心关键。20世纪50年代,它们在洛斯阿拉莫斯用于与氢弹开发有关的早期工作,并在物理学、物理化学和运筹学领域得到普及。'''兰德公司 Rand Corporation'''和美国空军是当时负责资助和宣传蒙特卡罗方法信息的两个主要组织,从那时起他们开始在许多不同的领域广泛地应用这一方法。
 
尽管受到当时的计算工具严重限制,蒙特卡洛方法依然是'''曼哈顿计划 Manhattan Project'''所需模拟的核心关键。20世纪50年代,它们在洛斯阿拉莫斯用于与氢弹开发有关的早期工作,并在物理学、物理化学和运筹学领域得到普及。'''兰德公司 Rand Corporation'''和美国空军是当时负责资助和宣传蒙特卡罗方法信息的两个主要组织,从那时起他们开始在许多不同的领域广泛地应用这一方法。
  −
The theory of more sophisticated mean field type particle Monte Carlo methods had certainly started by the mid-1960s, with the work of [[Henry McKean|Henry P. McKean Jr.]] on Markov interpretations of a class of nonlinear parabolic partial differential equations arising in fluid mechanics.<ref name="mck67">{{cite journal |last = McKean |first = Henry, P. |title = Propagation of chaos for a class of non-linear parabolic equations |journal = Lecture Series in Differential Equations, Catholic Univ. |year = 1967 |volume = 7 |pages = 41–57 }}</ref><ref>{{cite journal |last1 = McKean |first1 = Henry, P. |title = A class of Markov processes associated with nonlinear parabolic equations |journal = Proc. Natl. Acad. Sci. USA |year = 1966 |volume = 56 |issue = 6 |pages = 1907–1911 |doi = 10.1073/pnas.56.6.1907 |pmid = 16591437 |pmc = 220210 |bibcode = 1966PNAS...56.1907M }}</ref> We also quote an earlier pioneering article by [[Ted Harris (mathematician)|Theodore E. Harris]] and Herman Kahn, published in 1951, using mean field [[genetic algorithm|genetic]]-type Monte Carlo methods for estimating particle transmission energies.<ref>{{cite journal |last1 = Herman |first1 = Kahn |last2 = Theodore |first2 = Harris E. |title = Estimation of particle transmission by random sampling |journal = Natl. Bur. Stand. Appl. Math. Ser. |year = 1951 |volume = 12 |pages = 27–30 |url = https://dornsifecms.usc.edu/assets/sites/520/docs/kahnharris.pdf }}</ref> Mean field genetic type Monte Carlo methodologies are also used as heuristic natural search algorithms (a.k.a. [[metaheuristic]]) in evolutionary computing. The origins of these mean field computational techniques can be traced to 1950 and 1954 with the work of [[Alan Turing]] on genetic type mutation-selection learning machines<ref>{{cite journal |last = Turing |first = Alan M. |title = Computing machinery and intelligence|journal = Mind|volume = LIX |issue = 238 |pages = 433–460 |doi = 10.1093/mind/LIX.236.433 |year = 1950 }}</ref> and the articles by [[Nils Aall Barricelli]] at the [[Institute for Advanced Study]] in [[Princeton, New Jersey]].<ref>{{cite journal |last = Barricelli |first = Nils Aall |year = 1954 |author-link = Nils Aall Barricelli |title = Esempi numerici di processi di evoluzione |journal = Methodos |pages = 45–68 }}</ref><ref>{{cite journal |last = Barricelli |first = Nils Aall |year = 1957 |author-link = Nils Aall Barricelli |title = Symbiogenetic evolution processes realized by artificial methods |journal = Methodos |pages = 143–182 }}</ref>
      
The theory of more sophisticated mean field type particle Monte Carlo methods had certainly started by the mid-1960s, with the work of Henry P. McKean Jr. on Markov interpretations of a class of nonlinear parabolic partial differential equations arising in fluid mechanics. We also quote an earlier pioneering article by Theodore E. Harris and Herman Kahn, published in 1951, using mean field genetic-type Monte Carlo methods for estimating particle transmission energies. Mean field genetic type Monte Carlo methodologies are also used as heuristic natural search algorithms (a.k.a. metaheuristic) in evolutionary computing. The origins of these mean field computational techniques can be traced to 1950 and 1954 with the work of Alan Turing on genetic type mutation-selection learning machines and the articles by Nils Aall Barricelli at the Institute for Advanced Study in Princeton, New Jersey.
 
The theory of more sophisticated mean field type particle Monte Carlo methods had certainly started by the mid-1960s, with the work of Henry P. McKean Jr. on Markov interpretations of a class of nonlinear parabolic partial differential equations arising in fluid mechanics. We also quote an earlier pioneering article by Theodore E. Harris and Herman Kahn, published in 1951, using mean field genetic-type Monte Carlo methods for estimating particle transmission energies. Mean field genetic type Monte Carlo methodologies are also used as heuristic natural search algorithms (a.k.a. metaheuristic) in evolutionary computing. The origins of these mean field computational techniques can be traced to 1950 and 1954 with the work of Alan Turing on genetic type mutation-selection learning machines and the articles by Nils Aall Barricelli at the Institute for Advanced Study in Princeton, New Jersey.
   −
更复杂的平均场型粒子蒙特卡罗方法的理论产生于20世纪60年代中期,最初来自于'''小亨利·麦基恩 Henry P. McKean Jr.''' 研究流体力学中出现的一类非线性抛物型偏微分方程的马尔可夫解释。'''西奥多·爱德华·哈里斯 Theodore E. Harris'''和'''赫曼·卡恩 Herman Kahn'''在1951年发表了一篇开创性文章,使用平均场遗传型蒙特卡罗方法来估计粒子传输能量。这一方法在演化计算中也被用作启发式自然搜索算法(又称元启发式)。这些平均场计算技术的起源可以追溯到1950年和1954年,当时'''艾伦·图灵 Alan Turing'''在基因类型突变-选择学习机器上的工作,以及来自新泽西州普林斯顿高等研究院的'''尼尔斯·阿尔·巴里里利 Nils Aall Barricelli'''的文章。
+
更复杂的平均场型粒子蒙特卡罗方法的理论产生于20世纪60年代中期,最初来自于'''小亨利·麦基恩 Henry P. McKean Jr.''' 研究流体力学中出现的一类非线性抛物型偏微分方程的马尔可夫解释。<ref name="mck67">{{cite journal |last = McKean |first = Henry, P. |title = Propagation of chaos for a class of non-linear parabolic equations |journal = Lecture Series in Differential Equations, Catholic Univ. |year = 1967 |volume = 7 |pages = 41–57 }}</ref><ref>{{cite journal |last1 = McKean |first1 = Henry, P. |title = A class of Markov processes associated with nonlinear parabolic equations |journal = Proc. Natl. Acad. Sci. USA |year = 1966 |volume = 56 |issue = 6 |pages = 1907–1911 |doi = 10.1073/pnas.56.6.1907 |pmid = 16591437 |pmc = 220210 |bibcode = 1966PNAS...56.1907M }}</ref> '''西奥多·爱德华·哈里斯 Theodore E. Harris'''和'''赫曼·卡恩 Herman Kahn'''在1951年发表了一篇开创性文章,使用平均场遗传型蒙特卡罗方法来估计粒子传输能量。<ref>{{cite journal |last1 = Herman |first1 = Kahn |last2 = Theodore |first2 = Harris E. |title = Estimation of particle transmission by random sampling |journal = Natl. Bur. Stand. Appl. Math. Ser. |year = 1951 |volume = 12 |pages = 27–30 |url = https://dornsifecms.usc.edu/assets/sites/520/docs/kahnharris.pdf }}</ref> 这一方法在演化计算中也被用作启发式自然搜索算法(又称元启发式)。这些平均场计算技术的起源可以追溯到1950年和1954年,当时'''艾伦·图灵 Alan Turing'''在基因类型突变-选择学习机器上的工作,<ref>{{cite journal |last = Turing |first = Alan M. |title = Computing machinery and intelligence|journal = Mind|volume = LIX |issue = 238 |pages = 433–460 |doi = 10.1093/mind/LIX.236.433 |year = 1950 }}</ref>以及来自新泽西州普林斯顿高等研究院的'''尼尔斯·阿尔·巴里里利 Nils Aall Barricelli'''的文章。<ref>{{cite journal |last = Barricelli |first = Nils Aall |year = 1954 |author-link = Nils Aall Barricelli |title = Esempi numerici di processi di evoluzione |journal = Methodos |pages = 45–68 }}</ref><ref>{{cite journal |last = Barricelli |first = Nils Aall |year = 1957 |author-link = Nils Aall Barricelli |title = Symbiogenetic evolution processes realized by artificial methods |journal = Methodos |pages = 143–182 }}</ref>
 
  −
[[Quantum Monte Carlo]], and more specifically [[Diffusion Monte Carlo|diffusion Monte Carlo methods]] can also be interpreted as a mean field particle Monte Carlo approximation of [[Richard Feynman|Feynman]]–[[Mark Kac|Kac]] path integrals.<ref name="dp04">{{cite book |last = Del Moral |first = Pierre|title = Feynman–Kac formulae. Genealogical and interacting particle approximations |year = 2004 |publisher = Springer |quote = Series: Probability and Applications |url = https://www.springer.com/mathematics/probability/book/978-0-387-20268-6 |page = 575 |isbn = 9780387202686|series = Probability and Its Applications}}</ref><ref name="dmm002">{{cite book
  −
 
  −
Quantum Monte Carlo, and more specifically diffusion Monte Carlo methods can also be interpreted as a mean field particle Monte Carlo approximation of Feynman–Kac path integrals. The origins of Quantum Monte Carlo methods are often attributed to Enrico Fermi and Robert Richtmyer who developed in 1948 a mean field particle interpretation of neutron-chain reactions, but the first heuristic-like and genetic type particle algorithm (a.k.a. Resampled or Reconfiguration Monte Carlo methods) for estimating ground state energies of quantum systems (in reduced matrix models) is due to Jack H. Hetherington in 1984
  −
 
  −
量子蒙特卡罗法,更具体地说,扩散蒙特卡罗方法也可以解释为费曼-卡克路径积分的平均场粒子蒙特卡罗近似。量子蒙特卡罗法方法的起源通常归功于 Enrico Fermi 和 Robert Richtmyer,他们在1948年发明了中子链反应的平均场粒子解释,但是第一个启发式和遗传类型粒子算法(简称为 a。用于量子系统基态能量估计的重构蒙特卡罗方法(简化矩阵模型)是1984年杰克 · 赫瑟林顿提出的
  −
 
  −
<nowiki> </nowiki><nowiki>| last1 =Del Moral |</nowiki> first1 =P.
  −
 
  −
<nowiki> </nowiki><nowiki>| last2 =Miclo |</nowiki> first2 =L.
  −
 
  −
The use of Sequential Monte Carlo in advanced signal processing and Bayesian inference is more recent. It was in 1993, that Gordon et al., published in their seminal work the first application of a Monte Carlo resampling algorithm in Bayesian statistical inference. The authors named their algorithm 'the bootstrap filter', and demonstrated that compared to other filtering methods, their bootstrap algorithm does not require any assumption about that state-space or the noise of the system. We also quote another pioneering article in this field of Genshiro Kitagawa on a related "Monte Carlo filter", and the ones by Pierre Del Moral and Himilcon Carvalho, Pierre Del Moral, André Monin and Gérard Salut on particle filters published in the mid-1990s. Particle filters were also developed in signal processing in 1989–1992 by P. Del Moral, J. C. Noyer, G. Rigal, and G. Salut in the LAAS-CNRS in a series of restricted and classified research reports with STCAN (Service Technique des Constructions et Armes Navales), the IT company DIGILOG, and the [https://www.laas.fr/public/en LAAS-CNRS] (the Laboratory for Analysis and Architecture of Systems) on radar/sonar and GPS signal processing problems. These Sequential Monte Carlo methodologies can be interpreted as an acceptance-rejection sampler equipped with an interacting recycling mechanism.
  −
 
  −
在高级信号处理和贝叶斯推断中使用 序列蒙特卡罗方法是最近才出现的。1993年,高登等人在他们的开创性工作中发表了蒙特卡罗重采样算法在贝叶斯推论统计学中的首次应用。作者将他们的算法命名为“自举过滤器” ,并证明了与其他过滤方法相比,他们的自举过滤算法不需要任何关于系统状态空间或噪声的假设。我们还引用了北川源四郎关于相关的”蒙特卡洛过滤器”的另一篇开创性文章,以及皮埃尔 · 德尔 · 莫勒尔和希米尔康 · 卡瓦略、皮埃尔 · 德尔 · 莫勒尔、安德烈 · 莫宁和杰拉德 · 萨鲁特在1990年代中期发表的关于粒子过滤器的文章。1989-1992年,p. Del Moral、 j. c. Noyer、 g. Rigal 和 g. Salut 也在信号处理领域开发了粒子滤波器,这些粒子滤波器是由 LAAS-CNRS 的 p. Del Moral、 j. c. Noyer、 g. Rigal 和 g. Salut 与 STCAN (Service Technique des construction et Armes Navales)、 IT 公司 DIGILOG 和 https://www.laas.fr/public/en 的 LAAS-CNRS (the Laboratory for Analysis and Architecture of Systems)共同完成的一系列关于雷达/声纳和 GPS 信号处理问题的限制性和机密性研究报告。这些序贯蒙特卡罗方法可以解释为一个接受拒绝采样器配备了相互作用的回收机制。
  −
 
  −
| contribution =Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to non-linear filtering
  −
 
  −
| contribution-url =http://archive.numdam.org/item/SPS_2000__34__1_0
  −
 
  −
From 1950 to 1996, all the publications on Sequential Monte Carlo methodologies, including the pruning and resample Monte Carlo methods introduced in computational physics and molecular chemistry, present natural and heuristic-like algorithms applied to different situations without a single proof of their consistency, nor a discussion on the bias of the estimates and on genealogical and ancestral tree based algorithms. The mathematical foundations and the first rigorous analysis of these particle algorithms were written by Pierre Del Moral in 1996.
  −
 
  −
从1950年到1996年,所有关于序贯蒙特卡罗方法的出版物,包括计算物理学和分子化学中引入的修剪和重采样的蒙特卡罗方法,目前的自然和启发式算法适用于不同的情况,没有一个单一的证明其一致性,也没有讨论估计的偏差和基于系谱和祖先树的算法。这些粒子算法的数学基础和第一次严格的分析是由皮埃尔 · 德尔 · 莫勒尔在1996年写的。
  −
 
  −
| doi =10.1007/BFb0103798
  −
 
  −
| mr =1768060
  −
 
  −
Branching type particle methodologies with varying population sizes were also developed in the end of the 1990s by Dan Crisan, Jessica Gaines and Terry Lyons, and by Dan Crisan, Pierre Del Moral and Terry Lyons. Further developments in this field were developed in 2000 by P. Del Moral, A. Guionnet and L. Miclo.
  −
 
  −
20世纪90年代末,Dan Crisan,Jessica Gaines 和 Terry Lyons,以及 Dan Crisan,Pierre Del Moral 和 Terry Lyons 也开发了不同种群大小的分支型粒子方法学。2000年,p. Del Moral、 a. Guionnet 和 l. Miclo 进一步发展了这一领域。
  −
 
  −
| pages =1–145
  −
 
  −
| publisher =Springer |location =Berlin
  −
 
  −
| series =Lecture Notes in Mathematics
  −
 
  −
| title =Séminaire de Probabilités, XXXIV
  −
 
  −
There is no consensus on how Monte Carlo should be defined. For example, Ripley defines most probabilistic modeling as stochastic simulation, with Monte Carlo being reserved for Monte Carlo integration and Monte Carlo statistical tests. Sawilowsky distinguishes between a simulation, a Monte Carlo method, and a Monte Carlo simulation: a simulation is a fictitious representation of reality, a Monte Carlo method is a technique that can be used to solve a mathematical or statistical problem, and a Monte Carlo simulation uses repeated sampling to obtain the statistical properties of some phenomenon (or behavior). Examples:
  −
 
  −
对于蒙特卡洛应该如何定义还没有达成共识。例如,Ripley 将大多数概率模型定义为随机模拟,而蒙特卡洛模型则保留给蒙地卡罗积分和蒙特卡洛统计检验。Sawilowsky 区分了模拟、蒙特卡罗方法和蒙特卡洛模拟: 模拟是对现实的虚拟表示,蒙特卡罗方法是一种可用于解决数学或统计问题的技术,蒙特卡洛模拟使用重复抽样来获得某种现象(或行为)的统计特性。例子:
  −
 
  −
| volume =1729
  −
 
  −
| year =2000
  −
 
  −
|isbn =978-3-540-67314-9
  −
 
  −
| url =http://www.numdam.org/item/SPS_2000__34__1_0/
  −
 
  −
<nowiki>}}</nowiki></ref><ref name="dmm00m">{{cite journal|last1 = Del Moral|first1 = Pierre|last2 = Miclo|first2 = Laurent|title = A Moran particle system approximation of Feynman–Kac formulae.|journal = Stochastic Processes and Their Applications |year = 2000|volume = 86|issue = 2|pages = 193–216|doi = 10.1016/S0304-4149(99)00094-0|doi-access = free}}</ref><ref name="dm-esaim03">{{cite journal|last1 = Del Moral|first1 = Pierre|title = Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups|journal = ESAIM Probability & Statistics|date = 2003|volume = 7|pages = 171–208|url = http://journals.cambridge.org/download.php?file=%2FPSS%2FPSS7%2FS1292810003000016a.pdf&code=a0dbaa7ffca871126dc05fe2f918880a|doi = 10.1051/ps:2003001|doi-access = free}}</ref><ref name="caffarel1">{{cite journal|last1 = Assaraf|first1 = Roland|last2 = Caffarel|first2 = Michel|last3 = Khelif|first3 = Anatole|title = Diffusion Monte Carlo Methods with a fixed number of walkers|journal = Phys. Rev. E|url = http://qmcchem.ups-tlse.fr/files/caffarel/31.pdf|date = 2000|volume = 61|issue = 4|pages = 4566–4575|doi = 10.1103/physreve.61.4566|pmid = 11088257|bibcode = 2000PhRvE..61.4566A|url-status = dead|archiveurl = https://web.archive.org/web/20141107015724/http://qmcchem.ups-tlse.fr/files/caffarel/31.pdf|archivedate = 2014-11-07 }}</ref><ref name="caffarel2">{{cite journal|last1 = Caffarel|first1 = Michel|last2 = Ceperley|first2 = David |last3 = Kalos|first3 = Malvin|title = Comment on Feynman–Kac Path-Integral Calculation of the Ground-State Energies of Atoms|journal = Phys. Rev. Lett.|date = 1993|volume = 71|issue = 13|doi = 10.1103/physrevlett.71.2159|bibcode = 1993PhRvL..71.2159C|pages=2159|pmid=10054598}}</ref><ref name="h84">{{cite journal |last = Hetherington|first = Jack, H.|title = Observations on the statistical iteration of matrices|journal = Phys. Rev. A |date = 1984|volume = 30|issue = 2713|doi = 10.1103/PhysRevA.30.2713|pages = 2713–2719|bibcode = 1984PhRvA..30.2713H}}</ref> The origins of Quantum Monte Carlo methods are often attributed to Enrico Fermi and [[Robert D. Richtmyer|Robert Richtmyer]] who developed in 1948 a mean field particle interpretation of neutron-chain reactions,<ref>{{cite journal|last1 = Fermi|first1 = Enrique|last2 = Richtmyer|first2 = Robert, D.|title = Note on census-taking in Monte Carlo calculations|journal = LAM|date = 1948|volume = 805|issue = A|url = http://scienze-como.uninsubria.it/bressanini/montecarlo-history/fermi-1948.pdf|quote = Declassified report Los Alamos Archive}}</ref> but the first heuristic-like and genetic type particle algorithm (a.k.a. Resampled or Reconfiguration Monte Carlo methods) for estimating ground state energies of quantum systems (in reduced matrix models) is due to Jack H. Hetherington in 1984<ref name="h84" /> In molecular chemistry, the use of genetic heuristic-like particle methodologies (a.k.a. pruning and enrichment strategies) can be traced back to 1955 with the seminal work of [[Marshall Rosenbluth|Marshall N. Rosenbluth]] and [[Arianna W. Rosenbluth]].<ref name=":0">{{cite journal |last1 = Rosenbluth|first1 = Marshall, N.|last2 = Rosenbluth|first2 = Arianna, W.|title = Monte-Carlo calculations of the average extension of macromolecular chains|journal = J. Chem. Phys.|date = 1955|volume = 23|issue = 2|pages = 356–359|bibcode = 1955JChPh..23..356R|doi = 10.1063/1.1741967 |s2cid = 89611599|url = https://semanticscholar.org/paper/1570c85ba9aca1cb413ada31e215e0917c3ccba7}}</ref>
  −
 
  −
量子蒙特卡罗方法,更具体地说,扩散蒙特卡罗方法也可以解释为费曼—卡茨路径积分的平均场粒子蒙特卡罗近似。量子蒙特卡罗方法的起源通常归功于'''恩里科·费米Enrico Fermi'''和'''罗伯特·里希特迈耶 Robert Richtmyer'''于1948年开发了中子链式反应的平均场粒子解释,但是用于估计量子系统的基态能量(在简化矩阵模型中)的第一个类启发式和遗传型粒子算法(也称为重取样或重构蒙特卡洛方法)则是由杰克·H·海瑟林顿在1984年提出。在分子化学中,使用遗传类启发式的粒子方法(又名删减和富集策略)可以追溯到1955年—'''马歇尔·罗森布鲁斯 Marshall Rosenbluth'''和'''阿里安娜·罗森布鲁斯Arianna Rosenbluth'''的开创性工作。
  −
 
  −
The use of [[Sequential Monte Carlo method|Sequential Monte Carlo]] in advanced [[signal processing]] and [[Bayesian inference]] is more recent. It was in 1993, that Gordon et al., published in their seminal work<ref>{{Cite journal|title = Novel approach to nonlinear/non-Gaussian Bayesian state estimation |journal =  IEE Proceedings F - Radar and Signal Processing|date = April 1993|issn = 0956-375X|pages = 107–113|volume = 140|issue = 2|first1 = N.J.|last1 = Gordon|first2 = D.J.|last2 = Salmond|first3 = A.F.M.|last3 = Smith|doi=10.1049/ip-f-2.1993.0015|s2cid = 12644877|url = https://semanticscholar.org/paper/65484334a5cd4cabf6e5f7a17f606f07e2acf625}}</ref> the first application of a Monte Carlo [[Resampling (statistics)|resampling]] algorithm in Bayesian statistical inference. The authors named their algorithm 'the bootstrap filter', and demonstrated that compared to other filtering methods, their bootstrap algorithm does not require any assumption about that state-space or the noise of the system. We also quote another pioneering article in this field of Genshiro Kitagawa on a related "Monte Carlo filter",<ref>{{cite journal
  −
 
  −
|last = Kitagawa|first = G.|year = 1996|title = Monte carlo filter and smoother for non-Gaussian nonlinear state space models|volume = 5|issue = 1|journal = Journal of Computational and Graphical Statistics|pages = 1–25|doi = 10.2307/1390750|jstor = 1390750}}
  −
 
  −
</ref> and the ones by Pierre Del Moral<ref name="dm9622">{{cite journal|last1 = Del Moral|first1 = Pierre|title = Non Linear Filtering: Interacting Particle Solution.|journal = Markov Processes and Related Fields|date = 1996|volume = 2|issue = 4|pages = 555–580|url = http://web.maths.unsw.edu.au/~peterdel-moral/mprfs.pdf}}</ref> and Himilcon Carvalho, Pierre Del Moral, André Monin and Gérard Salut<ref>{{cite journal|last1 = Carvalho|first1 = Himilcon|last2 = Del Moral|first2 = Pierre|last3 = Monin|first3 = André|last4 = Salut|first4 = Gérard|title = Optimal Non-linear Filtering in GPS/INS Integration.|journal = IEEE Transactions on Aerospace and Electronic Systems|date = July 1997|volume = 33|issue = 3|pages = 835|url = http://homepages.laas.fr/monin/Version_anglaise/Publications_files/GPS.pdf|bibcode = 1997ITAES..33..835C|doi = 10.1109/7.599254|s2cid = 27966240}}</ref> on particle filters published in the mid-1990s. Particle filters were also developed in signal processing in 1989–1992 by P. Del Moral, J. C. Noyer, G. Rigal, and G. Salut in the LAAS-CNRS in a series of restricted and classified research reports with STCAN (Service Technique des Constructions et Armes Navales), the IT company DIGILOG, and the [https://www.laas.fr/public/en LAAS-CNRS] (the Laboratory for Analysis and Architecture of Systems) on radar/sonar and GPS signal processing problems.<ref>P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: An unified framework for particle solutions". LAAS-CNRS, Toulouse, Research Report no. 91137, DRET-DIGILOG- LAAS/CNRS contract, April (1991).</ref><ref>P. Del Moral, G. Rigal, and G. Salut. "Nonlinear and non Gaussian particle filters applied to inertial platform repositioning." LAAS-CNRS, Toulouse, Research Report no. 92207, STCAN/DIGILOG-LAAS/CNRS Convention STCAN no. A.91.77.013, (94p.) September (1991).</ref><ref>P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: Particle resolution in filtering and estimation: Experimental results". Convention DRET no. 89.34.553.00.470.75.01, Research report no.2 (54p.), January (1992).</ref><ref>P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: Particle resolution in filtering and estimation: Theoretical results".
     −
The main idea behind this method is that the results are computed based on repeated random sampling and statistical analysis. The Monte Carlo simulation is, in fact, random experimentations, in the case that, the results of these experiments are not well known.
+
[[Quantum Monte Carlo]], and more specifically [[Diffusion Monte Carlo|diffusion Monte Carlo methods]] can also be interpreted as a mean field particle Monte Carlo approximation of [[Richard Feynman|Feynman]]–[[Mark Kac|Kac]] path integrals.<ref name="dp04">{{cite book |last = Del Moral |first = Pierre|title = Feynman–Kac formulae. Genealogical and interacting particle approximations |year = 2004 |publisher = Springer |quote = Series: Probability and Applications |url = https://www.springer.com/mathematics/probability/book/978-0-387-20268-6 |page = 575 |isbn = 9780387202686|series = Probability and Its Applications}}</ref><ref name="dmm002">Del Moral, P.; Miclo, L. (2000). "Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to non-linear filtering". ''Séminaire de Probabilités, XXXIV''. Lecture Notes in Mathematics. '''1729'''. Berlin: Springer. pp. 1–145. doi:10.1007/BFb0103798. ISBN <bdi>978-3-540-67314-9</bdi><nowiki>. MR 1768060.}}</nowiki></ref><ref name="dmm00m">{{cite journal|last1 = Del Moral|first1 = Pierre|last2 = Miclo|first2 = Laurent|title = A Moran particle system approximation of Feynman–Kac formulae.|journal = Stochastic Processes and Their Applications |year = 2000|volume = 86|issue = 2|pages = 193–216|doi = 10.1016/S0304-4149(99)00094-0|doi-access = free}}</ref><ref name="dm-esaim03">{{cite journal|last1 = Del Moral|first1 = Pierre|title = Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups|journal = ESAIM Probability & Statistics|date = 2003|volume = 7|pages = 171–208|url = http://journals.cambridge.org/download.php?file=%2FPSS%2FPSS7%2FS1292810003000016a.pdf&code=a0dbaa7ffca871126dc05fe2f918880a|doi = 10.1051/ps:2003001|doi-access = free}}</ref><ref name="caffarel1">{{cite journal|last1 = Assaraf|first1 = Roland|last2 = Caffarel|first2 = Michel|last3 = Khelif|first3 = Anatole|title = Diffusion Monte Carlo Methods with a fixed number of walkers|journal = Phys. Rev. E|url = http://qmcchem.ups-tlse.fr/files/caffarel/31.pdf|date = 2000|volume = 61|issue = 4|pages = 4566–4575|doi = 10.1103/physreve.61.4566|pmid = 11088257|bibcode = 2000PhRvE..61.4566A|url-status = dead|archiveurl = https://web.archive.org/web/20141107015724/http://qmcchem.ups-tlse.fr/files/caffarel/31.pdf|archivedate = 2014-11-07 }}</ref><ref name="caffarel2">{{cite journal|last1 = Caffarel|first1 = Michel|last2 = Ceperley|first2 = David |last3 = Kalos|first3 = Malvin|title = Comment on Feynman–Kac Path-Integral Calculation of the Ground-State Energies of Atoms|journal = Phys. Rev. Lett.|date = 1993|volume = 71|issue = 13|doi = 10.1103/physrevlett.71.2159|bibcode = 1993PhRvL..71.2159C|pages=2159|pmid=10054598}}</ref><ref name="h84">{{cite journal |last = Hetherington|first = Jack, H.|title = Observations on the statistical iteration of matrices|journal = Phys. Rev. A |date = 1984|volume = 30|issue = 2713|doi = 10.1103/PhysRevA.30.2713|pages = 2713–2719|bibcode = 1984PhRvA..30.2713H}}</ref> The origins of Quantum Monte Carlo methods are often attributed to Enrico Fermi and [[Robert D. Richtmyer|Robert Richtmyer]] who developed in 1948 a mean field particle interpretation of neutron-chain reactions,<ref name=":11">{{cite journal|last1 = Fermi|first1 = Enrique|last2 = Richtmyer|first2 = Robert, D.|title = Note on census-taking in Monte Carlo calculations|journal = LAM|date = 1948|volume = 805|issue = A|url = http://scienze-como.uninsubria.it/bressanini/montecarlo-history/fermi-1948.pdf|quote = Declassified report Los Alamos Archive}}</ref> but the first heuristic-like and genetic type particle algorithm (a.k.a. Resampled or Reconfiguration Monte Carlo methods) for estimating ground state energies of quantum systems (in reduced matrix models) is due to Jack H. Hetherington in 1984<ref name="h84" /> In molecular chemistry, the use of genetic heuristic-like particle methodologies (a.k.a. pruning and enrichment strategies) can be traced back to 1955 with the seminal work of [[Marshall Rosenbluth|Marshall N. Rosenbluth]] and [[Arianna W. Rosenbluth]].<ref name=":0">Rosenbluth, Marshall, N.; Rosenbluth, Arianna, W. (1955). "Monte-Carlo calculations of the average extension of macromolecular chains". ''J. Chem. Phys''. '''23''' (2): 356–359. Bibcode:1955JChPh..23..356R. doi:10.1063/1.1741967. S2CID 89611599.</ref>
   −
该方法的主要思想是在重复随机抽样和统计分析的基础上计算结果。蒙特卡罗模拟实际上是随机实验,在这种情况下,这些实验的结果并不为人所知。
+
量子蒙特卡罗方法,更具体地说,扩散蒙特卡罗方法也可以解释为'''费曼—卡茨路径积分 Feynman–Kac Path Integrals'''的平均场粒子蒙特卡罗近似。<ref name="dp04" /><ref name="dmm002" /><ref name="dmm00m" /><ref name="dm-esaim03" /><ref name="caffarel1" /><ref name="caffarel2" /><ref name="h84" /> 量子蒙特卡罗方法的起源通常归功于'''恩里科·费米Enrico Fermi'''和'''罗伯特·里希特迈耶 Robert Richtmyer'''于1948年开发了中子链式反应的平均场粒子解释,<ref name=":11" /> 但是用于估计量子系统的基态能量(在简化矩阵模型中)的第一个类启发式和遗传型粒子算法(也称为重取样或重构蒙特卡洛方法)则是由杰克·H·海瑟林顿在1984年提出。在分子化学中,使用遗传类启发式的粒子方法(又名删减和富集策略)可以追溯到1955年—'''马歇尔·罗森布鲁斯 Marshall Rosenbluth'''和'''阿里安娜·罗森布鲁斯Arianna Rosenbluth'''的开创性工作。<ref name=":0" />
   −
Convention DRET no. 89.34.553.00.470.75.01, Research report no.3 (123p.), October (1992).</ref><ref>P. Del Moral, J.-Ch. Noyer, G. Rigal, and G. Salut. "Particle filters in radar signal processing: detection, estimation and air targets recognition". LAAS-CNRS, Toulouse, Research report no. 92495, December (1992).</ref><ref>P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: Particle resolution in filtering and estimation". Studies on: Filtering, optimal control, and maximum likelihood estimation. Convention DRET no. 89.34.553.00.470.75.01. Research report no.4 (210p.), January (1993).</ref> These Sequential Monte Carlo methodologies can be interpreted as an acceptance-rejection sampler equipped with an interacting recycling mechanism.
+
The use of [[Sequential Monte Carlo method|Sequential Monte Carlo]] in advanced [[signal processing]] and [[Bayesian inference]] is more recent. It was in 1993, that Gordon et al., published in their seminal work<ref name=":12">Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. (April 1993). "Novel approach to nonlinear/non-Gaussian Bayesian state estimation". ''IEE Proceedings F - Radar and Signal Processing''. '''140''' (2): 107–113. doi:10.1049/ip-f-2.1993.0015. ISSN 0956-375X. S2CID 12644877.</ref> the first application of a Monte Carlo [[Resampling (statistics)|resampling]] algorithm in Bayesian statistical inference. The authors named their algorithm 'the bootstrap filter', and demonstrated that compared to other filtering methods, their bootstrap algorithm does not require any assumption about that state-space or the noise of the system. We also quote another pioneering article in this field of Genshiro Kitagawa on a related "Monte Carlo filter",<ref name=":13">Kitagawa, G. (1996). "Monte carlo filter and smoother for non-Gaussian nonlinear state space models". ''Journal of Computational and Graphical Statistics''. '''5''' (1): 1–25. doi:10.2307/1390750. JSTOR 1390750.
 +
</ref> and the ones by Pierre Del Moral<ref name="dm9622">{{cite journal|last1 = Del Moral|first1 = Pierre|title = Non Linear Filtering: Interacting Particle Solution.|journal = Markov Processes and Related Fields|date = 1996|volume = 2|issue = 4|pages = 555–580|url = http://web.maths.unsw.edu.au/~peterdel-moral/mprfs.pdf}}</ref> and Himilcon Carvalho, Pierre Del Moral, André Monin and Gérard Salut<ref name=":14">Carvalho, Himilcon; Del Moral, Pierre; Monin, André; Salut, Gérard (July 1997). "Optimal Non-linear Filtering in GPS/INS Integration" (PDF). ''IEEE Transactions on Aerospace and Electronic Systems''. '''33''' (3): 835. Bibcode:1997ITAES..33..835C. doi:10.1109/7.599254. S2CID 27966240.</ref> on particle filters published in the mid-1990s. Particle filters were also developed in signal processing in 1989–1992 by P. Del Moral, J. C. Noyer, G. Rigal, and G. Salut in the LAAS-CNRS in a series of restricted and classified research reports with STCAN (Service Technique des Constructions et Armes Navales), the IT company DIGILOG, and the [https://www.laas.fr/public/en LAAS-CNRS] (the Laboratory for Analysis and Architecture of Systems) on radar/sonar and GPS signal processing problems.<ref name=":15">P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: An unified framework for particle solutions". LAAS-CNRS, Toulouse, Research Report no. 91137, DRET-DIGILOG- LAAS/CNRS contract, April (1991).</ref><ref name=":16">P. Del Moral, G. Rigal, and G. Salut. "Nonlinear and non Gaussian particle filters applied to inertial platform repositioning." LAAS-CNRS, Toulouse, Research Report no. 92207, STCAN/DIGILOG-LAAS/CNRS Convention STCAN no. A.91.77.013, (94p.) September (1991).</ref><ref name=":17">P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: Particle resolution in filtering and estimation: Experimental results". Convention DRET no. 89.34.553.00.470.75.01, Research report no.2 (54p.), January (1992).</ref><ref name=":18">P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: Particle resolution in filtering and estimation: Theoretical results". Convention DRET no. 89.34.553.00.470.75.01, Research report no.3 (123p.), October (1992).</ref><ref name=":19">P. Del Moral, J.-Ch. Noyer, G. Rigal, and G. Salut. "Particle filters in radar signal processing: detection, estimation and air targets recognition". LAAS-CNRS, Toulouse, Research report no. 92495, December (1992).</ref><ref name=":20">P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: Particle resolution in filtering and estimation". Studies on: Filtering, optimal control, and maximum likelihood estimation. Convention DRET no. 89.34.553.00.470.75.01. Research report no.4 (210p.), January (1993).</ref> These Sequential Monte Carlo methodologies can be interpreted as an acceptance-rejection sampler equipped with an interacting recycling mechanism.
   −
在高级信号处理和贝叶斯推断中使用序列蒙特卡罗方法是最近才出现的。1993年,高登等人在他们的开创性工作中发表了蒙特卡罗重采样算法在贝叶斯推论统计学中的首次应用。作者将他们的算法命名为“自举过滤器” ,并证明了与其他过滤方法相比,他们的自举过滤算法不需要任何关于系统状态空间或噪声的假设。此外北川源四郎也进行了”蒙特卡洛过滤器”相关的开创性研究;在1990年代中期,'''皮埃尔·德尔·莫勒尔 Pierre Del Moral'''和'''希米尔康 · 卡瓦略 Himilcon Carvalho'''以及皮埃尔 · 德尔 · 莫勒尔、'''安德烈 · 莫宁 André Monin'''和'''杰拉德 · 萨鲁特 Gérard Salut'''发表了关于粒子过滤器的文章。1989-1992年间,在LAAS-CNRS (系统分析和体系结构实验室),皮埃尔·德尔·莫勒尔、'''J·C·诺亚 J. C. Noyer'''、'''G·里加尔 G. Rigal''' 和'''杰拉德 · 萨鲁特'''开发了粒子滤波器用于信号处理。他们与STCAN (海军建造和武装服务技术部)、IT公司DIGILOG共同完成了一系列关于雷达/声纳和GPS信号处理问题的限制性和机密性研究报告。这些序列蒙特卡罗方法可以解释为一个接受拒绝采样器配备了相互作用的回收机制。
+
在高级信号处理和'''贝叶斯推断 Bayesian Inference'''中使用'''序列蒙特卡罗方法 Sequential Monte Carlo'''是最近才出现的。1993年,高登等人在他们的开创性工作中发表了蒙特卡罗重采样算法在贝叶斯推论统计学中的首次应用。<ref name=":12" /> 作者将他们的算法命名为“自举过滤器” ,并证明了与其他过滤方法相比,他们的自举过滤算法不需要任何关于系统状态空间或噪声的假设。此外北川源四郎也进行了”蒙特卡洛过滤器”相关的开创性研究。<ref name=":13" /> 在1990年代中期,'''皮埃尔·德尔·莫勒尔 Pierre Del Moral <ref name="dm9622" />''' 和'''希米尔康 · 卡瓦略 Himilcon Carvalho'''以及皮埃尔 · 德尔 · 莫勒尔、'''安德烈 · 莫宁 André Monin'''和'''杰拉德 · 萨鲁特 Gérard Salut <ref name=":14" />''' 发表了关于粒子过滤器的文章。1989-1992年间,在LAAS-CNRS (系统分析和体系结构实验室),皮埃尔·德尔·莫勒尔、'''J·C·诺亚 J. C. Noyer'''、'''G·里加尔 G. Rigal''' 和'''杰拉德 · 萨鲁特'''开发了粒子滤波器用于信号处理。他们与STCAN (海军建造和武装服务技术部)、IT公司DIGILOG共同完成了一系列关于雷达/声纳和GPS信号处理问题的限制性和机密性研究报告。<ref name=":15" /><ref name=":16" /><ref name=":17" /><ref name=":18" /><ref name=":19" /><ref name=":20" /> 这些序列蒙特卡罗方法可以解释为一个接受拒绝采样器配备了相互作用的回收机制。
    
From 1950 to 1996, all the publications on Sequential Monte Carlo methodologies, including the pruning and resample Monte Carlo methods introduced in computational physics and molecular chemistry, present natural and heuristic-like algorithms applied to different situations without a single proof of their consistency, nor a discussion on the bias of the estimates and on genealogical and ancestral tree based algorithms. The mathematical foundations and the first rigorous analysis of these particle algorithms were written by Pierre Del Moral in 1996.<ref name="dm9622"/><ref name=":22">{{cite journal|last1 = Del Moral|first1 = Pierre|title = Measure Valued Processes and Interacting Particle Systems. Application to Non Linear Filtering Problems|journal = Annals of Applied Probability|date = 1998|edition = Publications du Laboratoire de Statistique et Probabilités, 96-15 (1996)|volume = 8|issue = 2|pages = 438–495|url = http://projecteuclid.org/download/pdf_1/euclid.aoap/1028903535|doi = 10.1214/aoap/1028903535|citeseerx = 10.1.1.55.5257}}</ref>
 
From 1950 to 1996, all the publications on Sequential Monte Carlo methodologies, including the pruning and resample Monte Carlo methods introduced in computational physics and molecular chemistry, present natural and heuristic-like algorithms applied to different situations without a single proof of their consistency, nor a discussion on the bias of the estimates and on genealogical and ancestral tree based algorithms. The mathematical foundations and the first rigorous analysis of these particle algorithms were written by Pierre Del Moral in 1996.<ref name="dm9622"/><ref name=":22">{{cite journal|last1 = Del Moral|first1 = Pierre|title = Measure Valued Processes and Interacting Particle Systems. Application to Non Linear Filtering Problems|journal = Annals of Applied Probability|date = 1998|edition = Publications du Laboratoire de Statistique et Probabilités, 96-15 (1996)|volume = 8|issue = 2|pages = 438–495|url = http://projecteuclid.org/download/pdf_1/euclid.aoap/1028903535|doi = 10.1214/aoap/1028903535|citeseerx = 10.1.1.55.5257}}</ref>
   −
从1950年到1996年,所有关于顺序蒙特卡罗方法的出版物,包括计算物理和分子化学中引入的删减和重采样蒙特卡罗方法,目前应用于不同的情况的自然和类启发式算法,没有任何一致性证明,也没有讨论估计的偏差和基于谱系和遗传树的算法。皮埃尔 · 德尔 · 莫勒尔在1996年的写作中阐述了关于这些粒子算法的数学基础,并对其第一次进行了严格的分析。
+
从1950年到1996年,所有关于顺序蒙特卡罗方法的出版物,包括计算物理和分子化学中引入的删减和重采样蒙特卡罗方法,目前应用于不同的情况的自然和类启发式算法,没有任何一致性证明,也没有讨论估计的偏差和基于谱系和遗传树的算法。皮埃尔 · 德尔 · 莫勒尔在1996年的写作中阐述了关于这些粒子算法的数学基础,并对其第一次进行了严格的分析。<ref name="dm9622" /><ref name=":22" />
   −
Branching type particle methodologies with varying population sizes were also developed in the end of the 1990s by Dan Crisan, Jessica Gaines and Terry Lyons,<ref name=":42">{{cite journal|last1 = Crisan|first1 = Dan|last2 = Gaines|first2 = Jessica|last3 = Lyons|first3 = Terry|title = Convergence of a branching particle method to the solution of the Zakai|journal = SIAM Journal on Applied Mathematics|date = 1998|volume = 58|issue = 5|pages = 1568–1590|doi = 10.1137/s0036139996307371|s2cid = 39982562|url = https://semanticscholar.org/paper/99e8759a243cd0568b0f32cbace2ad0525b16bb6}}</ref><ref>{{cite journal|last1 = Crisan|first1 = Dan|last2 = Lyons|first2 = Terry|title = Nonlinear filtering and measure-valued processes|journal = Probability Theory and Related Fields|date = 1997|volume = 109|issue = 2|pages = 217–244|doi = 10.1007/s004400050131|s2cid = 119809371}}</ref><ref>{{cite journal|last1 = Crisan|first1 = Dan|last2 = Lyons|first2 = Terry|title = A particle approximation of the solution of the Kushner–Stratonovitch equation|journal = Probability Theory and Related Fields|date = 1999|volume = 115|issue = 4|pages = 549–578|doi = 10.1007/s004400050249|s2cid = 117725141}}</ref> and by Dan Crisan, Pierre Del Moral and Terry Lyons.<ref name=":52">{{cite journal|last1 = Crisan|first1 = Dan|last2 = Del Moral|first2 = Pierre|last3 = Lyons|first3 = Terry|title = Discrete filtering using branching and interacting particle systems|journal = Markov Processes and Related Fields|date = 1999|volume = 5|issue = 3|pages = 293–318|url = http://web.maths.unsw.edu.au/~peterdel-moral/crisan98discrete.pdf}}</ref> Further developments in this field were developed in 2000 by P. Del Moral, A. Guionnet and L. Miclo.<ref name="dmm002" /><ref name="dg99">{{cite journal|last1 = Del Moral|first1 = Pierre|last2 = Guionnet|first2 = Alice|title = On the stability of Measure Valued Processes with Applications to filtering|journal = C. R. Acad. Sci. Paris|date = 1999|volume = 39|issue = 1|pages = 429–434}}</ref><ref name="dg01">{{cite journal|last1 = Del Moral|first1 = Pierre|last2 = Guionnet|first2 = Alice|title = On the stability of interacting processes with applications to filtering and genetic algorithms|journal = Annales de l'Institut Henri Poincaré|date = 2001|volume = 37|issue = 2|pages = 155–194|url = http://web.maths.unsw.edu.au/~peterdel-moral/ihp.ps|doi = 10.1016/s0246-0203(00)01064-5|bibcode=2001AnIHP..37..155D}}</ref>
+
Branching type particle methodologies with varying population sizes were also developed in the end of the 1990s by Dan Crisan, Jessica Gaines and Terry Lyons,<ref name=":42">Crisan, Dan; Gaines, Jessica; Lyons, Terry (1998). "Convergence of a branching particle method to the solution of the Zakai". ''SIAM Journal on Applied Mathematics''. '''58''' (5): 1568–1590. doi:10.1137/s0036139996307371. S2CID 39982562.</ref><ref name=":21">Crisan, Dan; Lyons, Terry (1997). "Nonlinear filtering and measure-valued processes". ''Probability Theory and Related Fields''. '''109''' (2): 217–244. doi:10.1007/s004400050131. S2CID 119809371.</ref><ref name=":23">Crisan, Dan; Lyons, Terry (1999). "A particle approximation of the solution of the Kushner–Stratonovitch equation". ''Probability Theory and Related Fields''. '''115''' (4): 549–578. doi:10.1007/s004400050249. S2CID 117725141.</ref> and by Dan Crisan, Pierre Del Moral and Terry Lyons.<ref name=":52">{{cite journal|last1 = Crisan|first1 = Dan|last2 = Del Moral|first2 = Pierre|last3 = Lyons|first3 = Terry|title = Discrete filtering using branching and interacting particle systems|journal = Markov Processes and Related Fields|date = 1999|volume = 5|issue = 3|pages = 293–318|url = http://web.maths.unsw.edu.au/~peterdel-moral/crisan98discrete.pdf}}</ref> Further developments in this field were developed in 2000 by P. Del Moral, A. Guionnet and L. Miclo.<ref name="dmm002" /><ref name="dg99">{{cite journal|last1 = Del Moral|first1 = Pierre|last2 = Guionnet|first2 = Alice|title = On the stability of Measure Valued Processes with Applications to filtering|journal = C. R. Acad. Sci. Paris|date = 1999|volume = 39|issue = 1|pages = 429–434}}</ref><ref name="dg01">{{cite journal|last1 = Del Moral|first1 = Pierre|last2 = Guionnet|first2 = Alice|title = On the stability of interacting processes with applications to filtering and genetic algorithms|journal = Annales de l'Institut Henri Poincaré|date = 2001|volume = 37|issue = 2|pages = 155–194|url = http://web.maths.unsw.edu.au/~peterdel-moral/ihp.ps|doi = 10.1016/s0246-0203(00)01064-5|bibcode=2001AnIHP..37..155D}}</ref>
   −
20世纪90年代末,'''丹·克里桑 Dan Crisan'''、'''杰西卡·盖恩斯 Jessica Gaines'''和'''特里·利昂斯 Terry Lyons''',以及丹·克里桑、皮埃尔·德尔·莫勒尔和特里·利昂斯也发展了具有不同种群大小的分支型粒子方法。2000年,皮埃尔·德尔·莫勒尔、'''爱丽丝·吉奥内 A. Guionnet'''和'''洛朗·米克洛 L. Miclo'''进一步发展了这一领域。
+
20世纪90年代末,'''丹·克里桑 Dan Crisan'''、'''杰西卡·盖恩斯 Jessica Gaines'''和'''特里·利昂斯 Terry Lyons''',<ref name=":42" /><ref name=":21" /><ref name=":23" /> 以及丹·克里桑、皮埃尔·德尔·莫勒尔和特里·利昂斯也发展了具有不同种群大小的分支型粒子方法。<ref name=":52" /> 2000年,皮埃尔·德尔·莫勒尔、'''爱丽丝·吉奥内 A. Guionnet'''和'''洛朗·米克洛 L. Miclo'''进一步发展了这一领域。<ref name="dmm002" /><ref name="dg99" /><ref name="dg01" />
    
==Definitions 定义==
 
==Definitions 定义==
596

个编辑

导航菜单