更改

跳到导航 跳到搜索
删除264字节 、 2021年8月1日 (日) 00:17
第491行: 第491行:     
The best-known importance sampling method, the Metropolis algorithm, can be generalized, and this gives a method that allows analysis of (possibly highly nonlinear) inverse problems with complex ''a priori'' information and data with an arbitrary noise distribution.<ref name=":63">Mosegaard, Klaus; Tarantola, Albert (1995). "Monte Carlo sampling of solutions to inverse problems" (PDF). ''J. Geophys. Res''. '''100''' (B7): 12431–12447. Bibcode:1995JGR...10012431M. doi:10.1029/94JB03097.</ref><ref name=":64">Tarantola, Albert (2005). ''Inverse Problem Theory''. Philadelphia: Society for Industrial and Applied Mathematics. ISBN <bdi>978-0-89871-572-9</bdi>.</ref>
 
The best-known importance sampling method, the Metropolis algorithm, can be generalized, and this gives a method that allows analysis of (possibly highly nonlinear) inverse problems with complex ''a priori'' information and data with an arbitrary noise distribution.<ref name=":63">Mosegaard, Klaus; Tarantola, Albert (1995). "Monte Carlo sampling of solutions to inverse problems" (PDF). ''J. Geophys. Res''. '''100''' (B7): 12431–12447. Bibcode:1995JGR...10012431M. doi:10.1029/94JB03097.</ref><ref name=":64">Tarantola, Albert (2005). ''Inverse Problem Theory''. Philadelphia: Society for Industrial and Applied Mathematics. ISBN <bdi>978-0-89871-572-9</bdi>.</ref>
  −
The best-known importance sampling method, the Metropolis algorithm, can be generalized, and this gives a method that allows analysis of (possibly highly nonlinear) inverse problems with complex a priori information and data with an arbitrary noise distribution.
      
最著名的重要性抽样方法,Metropolis–Hastings 演算法,可以推广,这提供了一种方法,允许分析(可能是高度非线性)与复杂的先验信息和数据与任意噪声分布的反问题。<ref name=":63" /><ref name=":64" />
 
最著名的重要性抽样方法,Metropolis–Hastings 演算法,可以推广,这提供了一种方法,允许分析(可能是高度非线性)与复杂的先验信息和数据与任意噪声分布的反问题。<ref name=":63" /><ref name=":64" />
596

个编辑

导航菜单