第14行: |
第14行: |
| The '''Miller–Urey experiment'''<ref>{{cite journal |vauthors=Hill HG, Nuth JA |title=The catalytic potential of cosmic dust: implications for prebiotic chemistry in the solar nebula and other protoplanetary systems |journal=Astrobiology |volume=3 |issue=2 |pages=291–304 |year=2003 |pmid=14577878 |doi=10.1089/153110703769016389|bibcode = 2003AsBio...3..291H}}</ref> (or '''Miller experiment''')<ref>{{cite journal | title=The analysis of comet mass spectrometric data |author1=Balm SP |author2=Hare J.P. |author3=Kroto HW | journal=Space Science Reviews| year=1991| volume=56|issue=1–2 | pages=185–9 |doi=10.1007/BF00178408 | bibcode=1991SSRv...56..185B|url=https://www.semanticscholar.org/paper/9bce3627fcb31bac372e6610472e59008703ec4b }}</ref> was a chemical [[experiment]] that simulated the conditions thought at the time (1952) to be present on the [[early Earth]] and tested the [[abiogenesis|chemical origin of life]] under those conditions. The experiment at the time supported [[Alexander Oparin]]'s and [[J. B. S. Haldane]]'s hypothesis that putative conditions on the primitive Earth favoured chemical reactions that synthesized more complex [[organic compound]]s from simpler inorganic precursors. Considered to be the classic experiment investigating [[abiogenesis]], it was performed in 1952 by [[Stanley Miller]], supervised by [[Harold Urey]] at the [[University of Chicago]], and published the following year.<ref name=miller1953>{{cite journal |last=Miller |first=Stanley L. |url=http://www.abenteuer-universum.de/pdf/miller_1953.pdf |title=Production of Amino Acids Under Possible Primitive Earth Conditions |journal=[[Science (journal)|Science]] |year=1953 |volume=117 |pages=528–9 |doi=10.1126/science.117.3046.528 |pmid=13056598 |issue=3046 |bibcode=1953Sci...117..528M |url-status=dead |archiveurl=https://web.archive.org/web/20120317062622/http://www.abenteuer-universum.de/pdf/miller_1953.pdf |archivedate=2012-03-17 |access-date=2011-01-17 }}</ref><ref>{{cite journal |last=Miller |first=Stanley L. |author2=Harold C. Urey |title=Organic Compound Synthesis on the Primitive Earth |journal=[[Science (journal)|Science]] |year=1959 |volume=130 |pages=245–51 |doi=10.1126/science.130.3370.245 |pmid=13668555 |issue=3370|bibcode = 1959Sci...130..245M}} Miller states that he made "A more complete analysis of the products" in the 1953 experiment, listing additional results.</ref><ref>{{cite journal |title=The 1953 Stanley L. Miller Experiment: Fifty Years of Prebiotic Organic Chemistry |author1=A. Lazcano |author2=J. L. Bada |journal=Origins of Life and Evolution of Biospheres |volume=33 |year=2004 |pages=235–242 |doi=10.1023/A:1024807125069 |pmid=14515862 |issue=3|url=https://www.semanticscholar.org/paper/beda7cb912470cec6e1bf2d13535edeedf6c5b16 |bibcode=2003OLEB...33..235L }}</ref> | | The '''Miller–Urey experiment'''<ref>{{cite journal |vauthors=Hill HG, Nuth JA |title=The catalytic potential of cosmic dust: implications for prebiotic chemistry in the solar nebula and other protoplanetary systems |journal=Astrobiology |volume=3 |issue=2 |pages=291–304 |year=2003 |pmid=14577878 |doi=10.1089/153110703769016389|bibcode = 2003AsBio...3..291H}}</ref> (or '''Miller experiment''')<ref>{{cite journal | title=The analysis of comet mass spectrometric data |author1=Balm SP |author2=Hare J.P. |author3=Kroto HW | journal=Space Science Reviews| year=1991| volume=56|issue=1–2 | pages=185–9 |doi=10.1007/BF00178408 | bibcode=1991SSRv...56..185B|url=https://www.semanticscholar.org/paper/9bce3627fcb31bac372e6610472e59008703ec4b }}</ref> was a chemical [[experiment]] that simulated the conditions thought at the time (1952) to be present on the [[early Earth]] and tested the [[abiogenesis|chemical origin of life]] under those conditions. The experiment at the time supported [[Alexander Oparin]]'s and [[J. B. S. Haldane]]'s hypothesis that putative conditions on the primitive Earth favoured chemical reactions that synthesized more complex [[organic compound]]s from simpler inorganic precursors. Considered to be the classic experiment investigating [[abiogenesis]], it was performed in 1952 by [[Stanley Miller]], supervised by [[Harold Urey]] at the [[University of Chicago]], and published the following year.<ref name=miller1953>{{cite journal |last=Miller |first=Stanley L. |url=http://www.abenteuer-universum.de/pdf/miller_1953.pdf |title=Production of Amino Acids Under Possible Primitive Earth Conditions |journal=[[Science (journal)|Science]] |year=1953 |volume=117 |pages=528–9 |doi=10.1126/science.117.3046.528 |pmid=13056598 |issue=3046 |bibcode=1953Sci...117..528M |url-status=dead |archiveurl=https://web.archive.org/web/20120317062622/http://www.abenteuer-universum.de/pdf/miller_1953.pdf |archivedate=2012-03-17 |access-date=2011-01-17 }}</ref><ref>{{cite journal |last=Miller |first=Stanley L. |author2=Harold C. Urey |title=Organic Compound Synthesis on the Primitive Earth |journal=[[Science (journal)|Science]] |year=1959 |volume=130 |pages=245–51 |doi=10.1126/science.130.3370.245 |pmid=13668555 |issue=3370|bibcode = 1959Sci...130..245M}} Miller states that he made "A more complete analysis of the products" in the 1953 experiment, listing additional results.</ref><ref>{{cite journal |title=The 1953 Stanley L. Miller Experiment: Fifty Years of Prebiotic Organic Chemistry |author1=A. Lazcano |author2=J. L. Bada |journal=Origins of Life and Evolution of Biospheres |volume=33 |year=2004 |pages=235–242 |doi=10.1023/A:1024807125069 |pmid=14515862 |issue=3|url=https://www.semanticscholar.org/paper/beda7cb912470cec6e1bf2d13535edeedf6c5b16 |bibcode=2003OLEB...33..235L }}</ref> |
| | | |
| + | The Miller–Urey experiment (or Miller experiment) was a chemical experiment that simulated the conditions thought at the time (1952) to be present on the early Earth and tested the chemical origin of life under those conditions. The experiment at the time supported Alexander Oparin's and J. B. S. Haldane's hypothesis that putative conditions on the primitive Earth favoured chemical reactions that synthesized more complex organic compounds from simpler inorganic precursors. Considered to be the classic experiment investigating abiogenesis, it was performed in 1952 by Stanley Miller, supervised by Harold Urey at the University of Chicago, and published the following year. |
| | | |
| ‘‘‘米勒尤里实验 Miller–Urey experiment’‘‘<ref>{{cite journal |vauthors=Hill HG, Nuth JA |title=The catalytic potential of cosmic dust: implications for prebiotic chemistry in the solar nebula and other protoplanetary systems |journal=Astrobiology |volume=3 |issue=2 |pages=291–304 |year=2003 |pmid=14577878 |doi=10.1089/153110703769016389|bibcode = 2003AsBio...3..291H}}</ref> ((或称米勒实验 Miller experiment)<ref>{{cite journal | title=The analysis of comet mass spectrometric data |author1=Balm SP |author2=Hare J.P. |author3=Kroto HW | journal=Space Science Reviews| year=1991| volume=56|issue=1–2 | pages=185–9 |doi=10.1007/BF00178408 | bibcode=1991SSRv...56..185B|url=https://www.semanticscholar.org/paper/9bce3627fcb31bac372e6610472e59008703ec4b }}</ref>是一个化学实验,模拟了当时(1952年)人们认为的地球早期环境并测验了在这些条件下生命的化学起源。当时的实验支持了亚历山大·奥帕林 Alexander Oparin和J·B·S·霍尔丹 J·B·S·Haldane的假说,即假设存在于原始地球上的条件是有利于简单无机物合成为更复杂有机物这一类化学反应的发生的。该实验被认为是研究’‘‘无生源说 abiogenesis’‘‘的经典之作,1952年由斯坦利·米勒 Stanlely Miller主持,芝加哥大学的哈罗德·尤里 Harold Urey监督,并于次年发表<ref name=miller1953>{{cite journal |last=Miller |first=Stanley L. |url=http://www.abenteuer-universum.de/pdf/miller_1953.pdf |title=Production of Amino Acids Under Possible Primitive Earth Conditions |journal=[[Science (journal)|Science]] |year=1953 |volume=117 |pages=528–9 |doi=10.1126/science.117.3046.528 |pmid=13056598 |issue=3046 |bibcode=1953Sci...117..528M |url-status=dead |archiveurl=https://web.archive.org/web/20120317062622/http://www.abenteuer-universum.de/pdf/miller_1953.pdf |archivedate=2012-03-17 |access-date=2011-01-17 }}</ref><ref>{{cite journal |last=Miller |first=Stanley L. |author2=Harold C. Urey |title=Organic Compound Synthesis on the Primitive Earth |journal=[[Science (journal)|Science]] |year=1959 |volume=130 |pages=245–51 |doi=10.1126/science.130.3370.245 |pmid=13668555 |issue=3370|bibcode = 1959Sci...130..245M}} Miller states that he made "A more complete analysis of the products" in the 1953 experiment, listing additional results.</ref><ref>{{cite journal |title=The 1953 Stanley L. Miller Experiment: Fifty Years of Prebiotic Organic Chemistry |author1=A. Lazcano |author2=J. L. Bada |journal=Origins of Life and Evolution of Biospheres |volume=33 |year=2004 |pages=235–242 |doi=10.1023/A:1024807125069 |pmid=14515862 |issue=3|url=https://www.semanticscholar.org/paper/beda7cb912470cec6e1bf2d13535edeedf6c5b16 |bibcode=2003OLEB...33..235L }}</ref> | | ‘‘‘米勒尤里实验 Miller–Urey experiment’‘‘<ref>{{cite journal |vauthors=Hill HG, Nuth JA |title=The catalytic potential of cosmic dust: implications for prebiotic chemistry in the solar nebula and other protoplanetary systems |journal=Astrobiology |volume=3 |issue=2 |pages=291–304 |year=2003 |pmid=14577878 |doi=10.1089/153110703769016389|bibcode = 2003AsBio...3..291H}}</ref> ((或称米勒实验 Miller experiment)<ref>{{cite journal | title=The analysis of comet mass spectrometric data |author1=Balm SP |author2=Hare J.P. |author3=Kroto HW | journal=Space Science Reviews| year=1991| volume=56|issue=1–2 | pages=185–9 |doi=10.1007/BF00178408 | bibcode=1991SSRv...56..185B|url=https://www.semanticscholar.org/paper/9bce3627fcb31bac372e6610472e59008703ec4b }}</ref>是一个化学实验,模拟了当时(1952年)人们认为的地球早期环境并测验了在这些条件下生命的化学起源。当时的实验支持了亚历山大·奥帕林 Alexander Oparin和J·B·S·霍尔丹 J·B·S·Haldane的假说,即假设存在于原始地球上的条件是有利于简单无机物合成为更复杂有机物这一类化学反应的发生的。该实验被认为是研究’‘‘无生源说 abiogenesis’‘‘的经典之作,1952年由斯坦利·米勒 Stanlely Miller主持,芝加哥大学的哈罗德·尤里 Harold Urey监督,并于次年发表<ref name=miller1953>{{cite journal |last=Miller |first=Stanley L. |url=http://www.abenteuer-universum.de/pdf/miller_1953.pdf |title=Production of Amino Acids Under Possible Primitive Earth Conditions |journal=[[Science (journal)|Science]] |year=1953 |volume=117 |pages=528–9 |doi=10.1126/science.117.3046.528 |pmid=13056598 |issue=3046 |bibcode=1953Sci...117..528M |url-status=dead |archiveurl=https://web.archive.org/web/20120317062622/http://www.abenteuer-universum.de/pdf/miller_1953.pdf |archivedate=2012-03-17 |access-date=2011-01-17 }}</ref><ref>{{cite journal |last=Miller |first=Stanley L. |author2=Harold C. Urey |title=Organic Compound Synthesis on the Primitive Earth |journal=[[Science (journal)|Science]] |year=1959 |volume=130 |pages=245–51 |doi=10.1126/science.130.3370.245 |pmid=13668555 |issue=3370|bibcode = 1959Sci...130..245M}} Miller states that he made "A more complete analysis of the products" in the 1953 experiment, listing additional results.</ref><ref>{{cite journal |title=The 1953 Stanley L. Miller Experiment: Fifty Years of Prebiotic Organic Chemistry |author1=A. Lazcano |author2=J. L. Bada |journal=Origins of Life and Evolution of Biospheres |volume=33 |year=2004 |pages=235–242 |doi=10.1023/A:1024807125069 |pmid=14515862 |issue=3|url=https://www.semanticscholar.org/paper/beda7cb912470cec6e1bf2d13535edeedf6c5b16 |bibcode=2003OLEB...33..235L }}</ref> |
第40行: |
第41行: |
| The experiment used water (H<sub>2</sub>O), methane (CH<sub>4</sub>), ammonia (NH<sub>3</sub>), and hydrogen (H<sub>2</sub>). The chemicals were all sealed inside a sterile 5-liter glass flask connected to a 500 ml flask half-full of water. The water in the smaller flask was heated to induce evaporation, and the water vapour was allowed to enter the larger flask. Continuous electrical sparks were fired between the electrodes to simulate lightning in the water vapour and gaseous mixture, and then the simulated atmosphere was cooled again so that the water condensed and trickled into a U-shaped trap at the bottom of the apparatus. | | The experiment used water (H<sub>2</sub>O), methane (CH<sub>4</sub>), ammonia (NH<sub>3</sub>), and hydrogen (H<sub>2</sub>). The chemicals were all sealed inside a sterile 5-liter glass flask connected to a 500 ml flask half-full of water. The water in the smaller flask was heated to induce evaporation, and the water vapour was allowed to enter the larger flask. Continuous electrical sparks were fired between the electrodes to simulate lightning in the water vapour and gaseous mixture, and then the simulated atmosphere was cooled again so that the water condensed and trickled into a U-shaped trap at the bottom of the apparatus. |
| | | |
− | 实验用水(H2O)、’‘‘甲烷 methane’‘‘(CH4)、’‘‘氨 ammonia’‘‘(NH3)和’‘‘氢 hydrogen ‘‘‘(H 2)。所有的化学物质都被密封在一个5升的无菌玻璃瓶里,这个玻璃瓶连接着一个500毫升的半满水的烧瓶。将小烧瓶中的水加热以诱导蒸发,使水蒸气进入大烧瓶。在电极之间连续地点燃电火花,在水蒸气和气体混合物中模拟闪电。然后再次冷却模拟的大气,使水凝结并滴入装置底部的U形曲管中。 | + | 实验用水(H2O)、’‘‘甲烷 methane’‘‘(CH4)、’‘‘氨 ammonia’‘‘(NH3)和<font color="#ff8000">氢 hydrogen ‘‘‘(H 2)。所有的化学物质都被密封在一个5升的无菌玻璃瓶里,这个玻璃瓶连接着一个500毫升的半满水的烧瓶。将小烧瓶中的水加热以诱导蒸发,使水蒸气进入大烧瓶。在电极之间连续地点燃电火花,在水蒸气和气体混合物中模拟闪电。然后再次冷却模拟的大气,使水凝结并滴入装置底部的U形曲管中。 |
| | | |
| | | |
第68行: |
第69行: |
| One-step reactions among the mixture components can produce hydrogen cyanide (HCN), formaldehyde (CH<sub>2</sub>O), and other active intermediate compounds (acetylene, cyanoacetylene, etc.): | | One-step reactions among the mixture components can produce hydrogen cyanide (HCN), formaldehyde (CH<sub>2</sub>O), and other active intermediate compounds (acetylene, cyanoacetylene, etc.): |
| | | |
− | 混合组分之间的一步反应可以生成’‘‘氢化氢 hydrogen’‘‘、’‘‘甲醛 formaldehyde ‘‘‘<ref>https://www.webcitation.org/query?url=http://www.geocities.com/capecanaveral/lab/2948/orgel.html&date=2009-10-25+16:53:26 Origin of Life on Earth by Leslie E. Orgel</ref><ref>{{Cite book |url=http://books.nap.edu/openbook.php?record_id=11860&page=85 |title=Read "Exploring Organic Environments in the Solar System" at NAP.edu |accessdate=2008-10-25 |url-status=live |archiveurl=https://web.archive.org/web/20090621053626/http://books.nap.edu/openbook.php?record_id=11860&page=85 |archivedate=2009-06-21 |doi=10.17226/11860 |year=2007 |isbn=978-0-309-10235-3 |last1=Council |first1=National Research |last2=Studies |first2=Division on Earth Life |last3=Technology |first3=Board on Chemical Sciences and |last4=Sciences |first4=Division on Engineering Physical |last5=Board |first5=Space Studies |last6=System |first6=Task Group on Organic Environments in the Solar }} Exploring Organic Environments in the Solar System (2007)</ref>和其他活性中间体(‘‘‘乙炔 acetylene’‘‘、’‘‘氰乙炔 cyanoacetylene’‘‘等) :{{Citation needed|date=June 2016}} | + | 混合组分之间的一步反应可以生成’‘‘氢化氢 hydrogen’‘‘、<font color="#ff8000">甲醛 formaldehyde ‘‘‘<ref>https://www.webcitation.org/query?url=http://www.geocities.com/capecanaveral/lab/2948/orgel.html&date=2009-10-25+16:53:26 Origin of Life on Earth by Leslie E. Orgel</ref><ref>{{Cite book |url=http://books.nap.edu/openbook.php?record_id=11860&page=85 |title=Read "Exploring Organic Environments in the Solar System" at NAP.edu |accessdate=2008-10-25 |url-status=live |archiveurl=https://web.archive.org/web/20090621053626/http://books.nap.edu/openbook.php?record_id=11860&page=85 |archivedate=2009-06-21 |doi=10.17226/11860 |year=2007 |isbn=978-0-309-10235-3 |last1=Council |first1=National Research |last2=Studies |first2=Division on Earth Life |last3=Technology |first3=Board on Chemical Sciences and |last4=Sciences |first4=Division on Engineering Physical |last5=Board |first5=Space Studies |last6=System |first6=Task Group on Organic Environments in the Solar }} Exploring Organic Environments in the Solar System (2007)</ref>和其他活性中间体(‘‘‘乙炔 acetylene’‘‘、’‘‘氰乙炔 cyanoacetylene’‘‘等) :{{Citation needed|date=June 2016}} |
| | | |
| | | |
第125行: |
第126行: |
| | | |
| | | |
− | 此外,水和甲醛可以反应,通过’‘‘布特列罗夫反应 Butlerov’s reaction’‘‘产生各种糖,如’‘‘核糖 ribose ‘‘‘。 | + | 此外,水和甲醛可以反应,通过’‘‘布特列罗夫反应 Butlerov’s reaction’‘‘产生各种糖,如<font color="#ff8000">核糖 ribose ‘‘‘。 |
| | | |
| | | |
第172行: |
第173行: |
| K. A. Wilde submitted a paper to Science on December 15, 1952, before Miller submitted his paper to the same journal on February 10, 1953. Wilde's paper was published on July 10, 1953. Wilde used voltages up to only 600 V on a binary mixture of carbon dioxide (CO<sub>2</sub>) and water in a flow system. He observed only small amounts of carbon dioxide reduction to carbon monoxide, and no other significant reduction products or newly formed carbon compounds. | | K. A. Wilde submitted a paper to Science on December 15, 1952, before Miller submitted his paper to the same journal on February 10, 1953. Wilde's paper was published on July 10, 1953. Wilde used voltages up to only 600 V on a binary mixture of carbon dioxide (CO<sub>2</sub>) and water in a flow system. He observed only small amounts of carbon dioxide reduction to carbon monoxide, and no other significant reduction products or newly formed carbon compounds. |
| | | |
− | 1952年12月15日K·A· 王尔德 K. A. Wilde向《科学》杂志提交了一篇论文,早于Miller于1953年2月10日向该杂志提交的论文<ref>{{cite journal |last=Wilde |first=Kenneth A. |authorlink= |first2=Bruno J. |last2=Zwolinski |first3=Ransom B. |last3=Parlin |date=July 1953 |title=The Reaction Occurring in CO<sub>2</sub>, <sub>2</sub>O Mixtures in a High-Frequency Electric Arc |journal=[[Science (journal)|Science]] |volume=118 |issue=3054 |pages=43–44 |id= |doi=10.1126/science.118.3054.43-a |pmid=13076175 |bibcode=1953Sci...118...43W |df= }}</ref> .Wilde的论文发表于1953年7月10日。Wilde将只有600v的电压施加于在流动系统中由’‘‘二氧化碳 carbon dioxide’‘‘(CO2)和水所形成的二元混合物。他观察到只有少量的二氧化碳减少为’‘‘一氧化碳 carbon dioxide ‘‘‘,没有其他重要的还原产物或新形成的碳化合物。 | + | 1952年12月15日K·A· 王尔德 K. A. Wilde向《科学》杂志提交了一篇论文,早于Miller于1953年2月10日向该杂志提交的论文<ref>{{cite journal |last=Wilde |first=Kenneth A. |authorlink= |first2=Bruno J. |last2=Zwolinski |first3=Ransom B. |last3=Parlin |date=July 1953 |title=The Reaction Occurring in CO<sub>2</sub>, <sub>2</sub>O Mixtures in a High-Frequency Electric Arc |journal=[[Science (journal)|Science]] |volume=118 |issue=3054 |pages=43–44 |id= |doi=10.1126/science.118.3054.43-a |pmid=13076175 |bibcode=1953Sci...118...43W |df= }}</ref> .Wilde的论文发表于1953年7月10日。Wilde将只有600v的电压施加于在流动系统中由’‘‘二氧化碳 carbon dioxide’‘‘(CO2)和水所形成的二元混合物。他观察到只有少量的二氧化碳减少为<font color="#ff8000">一氧化碳 carbon dioxide ‘‘‘,没有其他重要的还原产物或新形成的碳化合物。 |
| | | |
| | | |
第180行: |
第181行: |
| Other researchers were studying UV-photolysis of water vapor with carbon monoxide. They have found that various alcohols, aldehydes and organic acids were synthesized in reaction mixture. | | Other researchers were studying UV-photolysis of water vapor with carbon monoxide. They have found that various alcohols, aldehydes and organic acids were synthesized in reaction mixture. |
| | | |
− | 其他研究人员正在研究水蒸气与一氧化碳的’‘‘紫外光解反应 UV-photolysis’‘‘。他们发现各种’‘‘醇类 alcohols ‘‘‘、’‘‘醛类aldehydes ‘‘‘和’‘‘有机酸 organic acids ‘‘‘都是在反应混合物中合成的<ref>[https://doi.org/10.1007%2FBF00931407 Synthesis of organic compounds from carbon monoxide and water by UV photolysis] ''Origins of Life''. December 1978, Volume 9, Issue 2, pp 93-101 Akiva Bar-nun, Hyman Hartman.</ref>。 | + | 其他研究人员正在研究水蒸气与一氧化碳的’‘‘紫外光解反应 UV-photolysis’‘‘。他们发现各种<font color="#ff8000">醇类 alcohols ‘‘‘、<font color="#ff8000">醛类aldehydes ‘‘‘和<font color="#ff8000">有机酸 organic acids ‘‘‘都是在反应混合物中合成的<ref>[https://doi.org/10.1007%2FBF00931407 Synthesis of organic compounds from carbon monoxide and water by UV photolysis] ''Origins of Life''. December 1978, Volume 9, Issue 2, pp 93-101 Akiva Bar-nun, Hyman Hartman.</ref>。 |
| | | |
| | | |
第196行: |
第197行: |
| Some evidence suggests that Earth's original atmosphere might have contained fewer of the reducing molecules than was thought at the time of the Miller–Urey experiment. There is abundant evidence of major volcanic eruptions 4 billion years ago, which would have released carbon dioxide, nitrogen, hydrogen sulfide (H<sub>2</sub>S), and sulfur dioxide (SO<sub>2</sub>) into the atmosphere. Experiments using these gases in addition to the ones in the original Miller–Urey experiment have produced more diverse molecules. The experiment created a mixture that was racemic (containing both L and D enantiomers) and experiments since have shown that "in the lab the two versions are equally likely to appear"; however, in nature, L amino acids dominate. Later experiments have confirmed disproportionate amounts of L or D oriented enantiomers are possible. | | Some evidence suggests that Earth's original atmosphere might have contained fewer of the reducing molecules than was thought at the time of the Miller–Urey experiment. There is abundant evidence of major volcanic eruptions 4 billion years ago, which would have released carbon dioxide, nitrogen, hydrogen sulfide (H<sub>2</sub>S), and sulfur dioxide (SO<sub>2</sub>) into the atmosphere. Experiments using these gases in addition to the ones in the original Miller–Urey experiment have produced more diverse molecules. The experiment created a mixture that was racemic (containing both L and D enantiomers) and experiments since have shown that "in the lab the two versions are equally likely to appear"; however, in nature, L amino acids dominate. Later experiments have confirmed disproportionate amounts of L or D oriented enantiomers are possible. |
| | | |
− | 一些证据表明,地球原始大气层中还原分子的含量可能比Miller-Urey实验时所认为的要少。有大量的证据表明,40亿年前的大型火山爆发会向大气中释放二氧化碳、氮、’‘‘硫化氢 hydrogen sulfide’‘‘(H2S)和’‘‘二氧化硫 sulfur dioxide ‘‘‘(SO2) <ref name=Green>{{Cite journal|last=Green|first=Jack|title=Academic Aspects of Lunar Water Resources and Their Relevance to Lunar Protolife|journal=International Journal of Molecular Sciences|year=2011|volume=12|issue=9|pages=6051–6076|doi=10.3390/ijms12096051|pmid=22016644|pmc=3189768|ref=harv}}</ref>。除了最初的Miller-Urey实验中使用的气体之外,进一步使用这些气体的实验产生了更多样化的分子。该实验创造了一种外消旋体(包含L和D对映异构体)的混合物。此后的实验表明,“在实验室中,这两种化合物出现的可能性相等” <ref name="NS">{{Cite news |date=2006-06-02 |title=Right-handed amino acids were left behind |periodical=[[New Scientist]] |publisher=Reed Business Information Ltd |issue=2554 |pages=18 |url=https://www.newscientist.com/channel/life/mg19025545.200-righthanded-amino-acids-were-left-behind.html |accessdate=2008-07-09 |url-status=live |archiveurl=https://web.archive.org/web/20081024211531/http://www.newscientist.com/channel/life/mg19025545.200-righthanded-amino-acids-were-left-behind.html |archivedate=2008-10-24 }}</ref> ; 然而,在自然界中,L氨基酸占主导地位。后来的实验证实了不成比例的L或D取向对映异构体是可能的<ref>{{cite journal |last=Kojo |first=Shosuke |first2=Hiromi |last2=Uchino |first3=Mayu |last3=Yoshimura |first4=Kyoko |last4=Tanaka |date=October 2004 |title=Racemic D,L-asparagine causes enantiomeric excess of other coexisting racemic D,L-amino acids during recrystallization: a hypothesis accounting for the origin of L-amino acids in the biosphere |journal=Chemical Communications |volume= |issue=19 |pages=2146–2147 |pmid=15467844 |doi=10.1039/b409941a}}</ref> | + | 一些证据表明,地球原始大气层中还原分子的含量可能比Miller-Urey实验时所认为的要少。有大量的证据表明,40亿年前的大型火山爆发会向大气中释放二氧化碳、氮、’‘‘硫化氢 hydrogen sulfide’‘‘(H2S)和<font color="#ff8000">二氧化硫 sulfur dioxide ‘‘‘(SO2) <ref name=Green>{{Cite journal|last=Green|first=Jack|title=Academic Aspects of Lunar Water Resources and Their Relevance to Lunar Protolife|journal=International Journal of Molecular Sciences|year=2011|volume=12|issue=9|pages=6051–6076|doi=10.3390/ijms12096051|pmid=22016644|pmc=3189768|ref=harv}}</ref>。除了最初的Miller-Urey实验中使用的气体之外,进一步使用这些气体的实验产生了更多样化的分子。该实验创造了一种外消旋体(包含L和D对映异构体)的混合物。此后的实验表明,“在实验室中,这两种化合物出现的可能性相等” <ref name="NS">{{Cite news |date=2006-06-02 |title=Right-handed amino acids were left behind |periodical=[[New Scientist]] |publisher=Reed Business Information Ltd |issue=2554 |pages=18 |url=https://www.newscientist.com/channel/life/mg19025545.200-righthanded-amino-acids-were-left-behind.html |accessdate=2008-07-09 |url-status=live |archiveurl=https://web.archive.org/web/20081024211531/http://www.newscientist.com/channel/life/mg19025545.200-righthanded-amino-acids-were-left-behind.html |archivedate=2008-10-24 }}</ref> ; 然而,在自然界中,L氨基酸占主导地位。后来的实验证实了不成比例的L或D取向对映异构体是可能的<ref>{{cite journal |last=Kojo |first=Shosuke |first2=Hiromi |last2=Uchino |first3=Mayu |last3=Yoshimura |first4=Kyoko |last4=Tanaka |date=October 2004 |title=Racemic D,L-asparagine causes enantiomeric excess of other coexisting racemic D,L-amino acids during recrystallization: a hypothesis accounting for the origin of L-amino acids in the biosphere |journal=Chemical Communications |volume= |issue=19 |pages=2146–2147 |pmid=15467844 |doi=10.1039/b409941a}}</ref> |
| 。 | | 。 |
| | | |
第207行: |
第208行: |
| Originally it was thought that the primitive secondary atmosphere contained mostly ammonia and methane. However, it is likely that most of the atmospheric carbon was CO<sub>2</sub> with perhaps some CO and the nitrogen mostly N<sub>2</sub>. In practice gas mixtures containing CO, CO<sub>2</sub>, N<sub>2</sub>, etc. give much the same products as those containing CH<sub>4</sub> and NH<sub>3</sub> so long as there is no O<sub>2</sub>. The hydrogen atoms come mostly from water vapor. In fact, in order to generate aromatic amino acids under primitive earth conditions it is necessary to use less hydrogen-rich gaseous mixtures. Most of the natural amino acids, hydroxyacids, purines, pyrimidines, and sugars have been made in variants of the Miller experiment. | | Originally it was thought that the primitive secondary atmosphere contained mostly ammonia and methane. However, it is likely that most of the atmospheric carbon was CO<sub>2</sub> with perhaps some CO and the nitrogen mostly N<sub>2</sub>. In practice gas mixtures containing CO, CO<sub>2</sub>, N<sub>2</sub>, etc. give much the same products as those containing CH<sub>4</sub> and NH<sub>3</sub> so long as there is no O<sub>2</sub>. The hydrogen atoms come mostly from water vapor. In fact, in order to generate aromatic amino acids under primitive earth conditions it is necessary to use less hydrogen-rich gaseous mixtures. Most of the natural amino acids, hydroxyacids, purines, pyrimidines, and sugars have been made in variants of the Miller experiment. |
| | | |
− | 起初人们认为,原始次生大气主要含有氨和甲烷。然而,大气中的大部分碳可能是二氧化碳 ,一些一氧化碳和氮——大部分是氮气。在实际应用中,含有一氧化碳,二氧化碳和氮气等的混合气体在没有’‘‘氧气 oxygen ‘‘‘的条件下可以给出与含甲烷和氨气的混合气体制造出的产品相一致的产物。氢原子主要来自水蒸气。事实上,为了在原始地球条件下生成’‘‘芳香族氨基酸 aromatic ‘‘‘,必须使用较少的富氢气体混合物。大多数天然氨基酸、’‘‘羟基酸 hydroxyacids’‘‘‘‘‘嘌呤 purines ‘‘‘、’‘‘嘧啶 pyrimidines ‘‘‘和糖都在Miller实验的变体中生成<ref name=bada2013/><ref>{{cite journal|last1=Ruiz-Mirazo|first1=Kepa|last2=Briones|first2=Carlos|last3=de la Escosura|first3=Andrés|title=Prebiotic Systems Chemistry: New Perspectives for the Origins of Life|journal=Chemical Reviews|year=2014|volume=114|issue=1|pages=285–366|doi=10.1021/cr2004844|pmid=24171674}}</ref> | + | 起初人们认为,原始次生大气主要含有氨和甲烷。然而,大气中的大部分碳可能是二氧化碳 ,一些一氧化碳和氮——大部分是氮气。在实际应用中,含有一氧化碳,二氧化碳和氮气等的混合气体在没有<font color="#ff8000">氧气 oxygen ‘‘‘的条件下可以给出与含甲烷和氨气的混合气体制造出的产品相一致的产物。氢原子主要来自水蒸气。事实上,为了在原始地球条件下生成<font color="#ff8000">芳香族氨基酸 aromatic ‘‘‘,必须使用较少的富氢气体混合物。大多数天然氨基酸、<font color="#ff8000">羟基酸 hydroxyacids’‘‘<font color="#ff8000">嘌呤 purines ‘‘‘、<font color="#ff8000">嘧啶 pyrimidines ‘‘‘和糖都在Miller实验的变体中生成<ref name=bada2013/><ref>{{cite journal|last1=Ruiz-Mirazo|first1=Kepa|last2=Briones|first2=Carlos|last3=de la Escosura|first3=Andrés|title=Prebiotic Systems Chemistry: New Perspectives for the Origins of Life|journal=Chemical Reviews|year=2014|volume=114|issue=1|pages=285–366|doi=10.1021/cr2004844|pmid=24171674}}</ref> |
| 。 | | 。 |
| | | |
第231行: |
第232行: |
| Conditions similar to those of the Miller–Urey experiments are present in other regions of the solar system, often substituting ultraviolet light for lightning as the energy source for chemical reactions. The Murchison meteorite that fell near Murchison, Victoria, Australia in 1969 was found to contain over 90 different amino acids, nineteen of which are found in Earth life. Comets and other icy outer-solar-system bodies are thought to contain large amounts of complex carbon compounds (such as tholins) formed by these processes, darkening surfaces of these bodies. The early Earth was bombarded heavily by comets, possibly providing a large supply of complex organic molecules along with the water and other volatiles they contributed. This has been used to infer an origin of life outside of Earth: the panspermia hypothesis. | | Conditions similar to those of the Miller–Urey experiments are present in other regions of the solar system, often substituting ultraviolet light for lightning as the energy source for chemical reactions. The Murchison meteorite that fell near Murchison, Victoria, Australia in 1969 was found to contain over 90 different amino acids, nineteen of which are found in Earth life. Comets and other icy outer-solar-system bodies are thought to contain large amounts of complex carbon compounds (such as tholins) formed by these processes, darkening surfaces of these bodies. The early Earth was bombarded heavily by comets, possibly providing a large supply of complex organic molecules along with the water and other volatiles they contributed. This has been used to infer an origin of life outside of Earth: the panspermia hypothesis. |
| | | |
− | 类似Miller-Urey实验条件的环境在太阳系的其他区域也存在——不过通常以紫外线代替闪电作为化学反应的能源<ref>{{cite journal|last1=Nunn|first1=JF|title=Evolution of the atmosphere|journal=Proceedings of the Geologists' Association. Geologists' Association|year=1998|volume=109|issue=1|pages=1–13|pmid=11543127|doi=10.1016/s0016-7878(98)80001-1}}</ref><ref>{{cite journal|last1=Raulin|first1=F|last2=Bossard|first2=A|title=Organic syntheses in gas phase and chemical evolution in planetary atmospheres.|journal=Advances in Space Research|year=1984|volume=4|issue=12|pages=75–82|pmid=11537798|doi=10.1016/0273-1177(84)90547-7|bibcode=1984AdSpR...4...75R}}</ref><ref>{{cite journal|last1=Raulin|first1=François|last2=Brassé|first2=Coralie|last3=Poch|first3=Olivier|last4=Coll|first4=Patrice|title=Prebiotic-like chemistry on Titan|journal= Chemical Society Reviews|year=2012|volume=41|issue=16|pages=5380–93|doi=10.1039/c2cs35014a|pmid=22481630}}</ref>。1969年落在澳大利亚维多利亚州默奇森河附近的默奇森陨石被发现含有超过90种不同的氨基酸,其中十九种存在于地球生命中。彗星和其他太阳系外围的冰冷天体被认为含有大量复杂的碳化合物(例如’‘‘塞林 tholins ‘‘‘) ,在天体的暗化表面经由这些步骤形成<ref>{{cite journal |vauthors=Thompson WR, Murray BG, Khare BN, Sagan C |title=Coloration and darkening of methane clathrate and other ices by charged particle irradiation: applications to the outer solar system |journal=Journal of Geophysical Research |volume=92 |issue=A13 |pages=14933–47 |date=December 1987 |pmid=11542127 |doi=10.1029/JA092iA13p14933 |bibcode=1987JGR....9214933T|title-link=methane clathrate }}</ref>。早期的地球遭受了严重的彗星撞击,产生了大量复杂的有机分子以及水和其他挥发物<ref>{{cite journal|last=PIERAZZO|first=E.|author2=CHYBA C.F.|title=Amino acid survival in large cometary impacts|journal=Meteoritics & Planetary Science|year=2010|volume=34|issue=6|pages=909–918|doi=10.1111/j.1945-5100.1999.tb01409.x|bibcode=1999M&PS...34..909P}}</ref>。这被用来推断地球以外生命的起源: ‘‘‘胚种论 the panspermia hypothesis | + | 类似Miller-Urey实验条件的环境在太阳系的其他区域也存在——不过通常以紫外线代替闪电作为化学反应的能源<ref>{{cite journal|last1=Nunn|first1=JF|title=Evolution of the atmosphere|journal=Proceedings of the Geologists' Association. Geologists' Association|year=1998|volume=109|issue=1|pages=1–13|pmid=11543127|doi=10.1016/s0016-7878(98)80001-1}}</ref><ref>{{cite journal|last1=Raulin|first1=F|last2=Bossard|first2=A|title=Organic syntheses in gas phase and chemical evolution in planetary atmospheres.|journal=Advances in Space Research|year=1984|volume=4|issue=12|pages=75–82|pmid=11537798|doi=10.1016/0273-1177(84)90547-7|bibcode=1984AdSpR...4...75R}}</ref><ref>{{cite journal|last1=Raulin|first1=François|last2=Brassé|first2=Coralie|last3=Poch|first3=Olivier|last4=Coll|first4=Patrice|title=Prebiotic-like chemistry on Titan|journal= Chemical Society Reviews|year=2012|volume=41|issue=16|pages=5380–93|doi=10.1039/c2cs35014a|pmid=22481630}}</ref>。1969年落在澳大利亚维多利亚州默奇森河附近的默奇森陨石被发现含有超过90种不同的氨基酸,其中十九种存在于地球生命中。彗星和其他太阳系外围的冰冷天体被认为含有大量复杂的碳化合物(例如<font color="#ff8000">塞林 tholins ‘‘‘) ,在天体的暗化表面经由这些步骤形成<ref>{{cite journal |vauthors=Thompson WR, Murray BG, Khare BN, Sagan C |title=Coloration and darkening of methane clathrate and other ices by charged particle irradiation: applications to the outer solar system |journal=Journal of Geophysical Research |volume=92 |issue=A13 |pages=14933–47 |date=December 1987 |pmid=11542127 |doi=10.1029/JA092iA13p14933 |bibcode=1987JGR....9214933T|title-link=methane clathrate }}</ref>。早期的地球遭受了严重的彗星撞击,产生了大量复杂的有机分子以及水和其他挥发物<ref>{{cite journal|last=PIERAZZO|first=E.|author2=CHYBA C.F.|title=Amino acid survival in large cometary impacts|journal=Meteoritics & Planetary Science|year=2010|volume=34|issue=6|pages=909–918|doi=10.1111/j.1945-5100.1999.tb01409.x|bibcode=1999M&PS...34..909P}}</ref>。这被用来推断地球以外生命的起源: <font color="#ff8000">胚种论 the panspermia hypothesis |
| ‘‘‘。 | | ‘‘‘。 |
| | | |
第253行: |
第254行: |
| In 2008, a group of scientists examined 11 vials left over from Miller's experiments of the early 1950s. In addition to the classic experiment, reminiscent of Charles Darwin's envisioned "warm little pond", Miller had also performed more experiments, including one with conditions similar to those of volcanic eruptions. This experiment had a nozzle spraying a jet of steam at the spark discharge. By using high-performance liquid chromatography and mass spectrometry, the group found more organic molecules than Miller had. They found that the volcano-like experiment had produced the most organic molecules, 22 amino acids, 5 amines and many hydroxylated molecules, which could have been formed by hydroxyl radicals produced by the electrified steam. The group suggested that volcanic island systems became rich in organic molecules in this way, and that the presence of carbonyl sulfide there could have helped these molecules form peptides. | | In 2008, a group of scientists examined 11 vials left over from Miller's experiments of the early 1950s. In addition to the classic experiment, reminiscent of Charles Darwin's envisioned "warm little pond", Miller had also performed more experiments, including one with conditions similar to those of volcanic eruptions. This experiment had a nozzle spraying a jet of steam at the spark discharge. By using high-performance liquid chromatography and mass spectrometry, the group found more organic molecules than Miller had. They found that the volcano-like experiment had produced the most organic molecules, 22 amino acids, 5 amines and many hydroxylated molecules, which could have been formed by hydroxyl radicals produced by the electrified steam. The group suggested that volcanic island systems became rich in organic molecules in this way, and that the presence of carbonyl sulfide there could have helped these molecules form peptides. |
| | | |
− | 2008年,一组科学家检查了Miller20世纪50年代早期实验中遗留下来的11个小瓶。除了这个经典实验外——让人想起查尔斯·达尔文 Charles Darwin设想的“温暖的小池塘”,米勒还进行了更多的实验,其中一个实验的条件与火山爆发时相似。这个实验有一个喷嘴在火花放电处喷射蒸汽。通过使用’‘‘高效液相色谱 high-performance liquid chromatography’‘‘和’‘‘质谱 mass spectrometry ‘‘‘,研究小组比Miller发现了更多的有机分子。他们发现,类似火山的实验产生了最多的有机分子,22个氨基酸,5个胺和许多羟基化分子,这些分子可能是由通电蒸汽产生的羟基自由基形成的。研究小组认为,火山岛系统因这种方式而富含有机分子,而羰基硫化物的存在可能有助于这些分子形成’‘‘肽 peptides’‘‘。<ref name=Johnson2008>{{cite journal |vauthors=Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL |title=The Miller volcanic spark discharge experiment |journal=Science |volume=322 |issue=5900 |pages=404 |date=October 2008 |pmid=18927386 |doi=10.1126/science.1161527|bibcode = 2008Sci...322..404J }}</ref><ref>{{cite web | title='Lost' Miller–Urey Experiment Created More Of Life's Building Blocks | date=October 17, 2008 | website=Science Daily | url=https://www.sciencedaily.com/releases/2008/10/081016141411.htm | accessdate=2008-10-18 | url-status=live | archiveurl=https://web.archive.org/web/20081019111114/http://www.sciencedaily.com/releases/2008/10/081016141411.htm | archivedate=October 19, 2008 }}</ref> | + | 2008年,一组科学家检查了Miller20世纪50年代早期实验中遗留下来的11个小瓶。除了这个经典实验外——让人想起查尔斯·达尔文 Charles Darwin设想的“温暖的小池塘”,米勒还进行了更多的实验,其中一个实验的条件与火山爆发时相似。这个实验有一个喷嘴在火花放电处喷射蒸汽。通过使用<font color="#ff8000">高效液相色谱 high-performance liquid chromatography’‘‘和’‘‘质谱 mass spectrometry ‘‘‘,研究小组比Miller发现了更多的有机分子。他们发现,类似火山的实验产生了最多的有机分子,22个氨基酸,5个胺和许多羟基化分子,这些分子可能是由通电蒸汽产生的羟基自由基形成的。研究小组认为,火山岛系统因这种方式而富含有机分子,而羰基硫化物的存在可能有助于这些分子形成<font color="#ff8000">肽 peptides’‘‘。<ref name=Johnson2008>{{cite journal |vauthors=Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL |title=The Miller volcanic spark discharge experiment |journal=Science |volume=322 |issue=5900 |pages=404 |date=October 2008 |pmid=18927386 |doi=10.1126/science.1161527|bibcode = 2008Sci...322..404J }}</ref><ref>{{cite web | title='Lost' Miller–Urey Experiment Created More Of Life's Building Blocks | date=October 17, 2008 | website=Science Daily | url=https://www.sciencedaily.com/releases/2008/10/081016141411.htm | accessdate=2008-10-18 | url-status=live | archiveurl=https://web.archive.org/web/20081019111114/http://www.sciencedaily.com/releases/2008/10/081016141411.htm | archivedate=October 19, 2008 }}</ref> |
| 。 | | 。 |
| | | |