更改

跳到导航 跳到搜索
删除289字节 、 2021年8月3日 (二) 20:25
无编辑摘要
第13行: 第13行:  
[[File:ATP-3D-vdW.png|thumb|right|[[三磷酸腺苷]]的结构(ATP),它是能量代谢中的中枢中间体。]]
 
[[File:ATP-3D-vdW.png|thumb|right|[[三磷酸腺苷]]的结构(ATP),它是能量代谢中的中枢中间体。]]
   −
'''新陈代谢'''(/məˈtæbəlɪzəm/,来自希腊语:μεταβολή metabolē,"变化")是生物体内维持生命的[[化学反应]]。新陈代谢的三个主要目的是:将食物转化为能量以运行细胞过程;将食物/燃料转化为[[蛋白质]]、[[脂类]]、[[核酸]]和一些[[碳水化合物]]的构件;以及消除[[代谢废物]]。这些酶催化的反应使生物体得以生长和繁殖,维持其结构,并对其环境作出反应。(新陈代谢这个词也可以指生物体内发生的所有化学反应的总和,包括消化和物质在细胞内以及不同细胞之间的运输,在这种情况下,上述细胞内的一系列反应称为中间代谢或中级代谢)。
+
'''新陈代谢'''(/məˈtæbəlɪzəm/,来自希腊语:μεταβολή metabolē,"变化")是生物体内维持生命的化学反应。新陈代谢的三个主要目的是:将食物转化为能量以运行细胞过程;将食物/燃料转化为蛋白质、脂类、核酸和一些碳水化合物的构件;以及消除代谢废物。这些酶催化的反应使生物体得以生长和繁殖,维持其结构,并对其环境作出反应。(新陈代谢这个词也可以指生物体内发生的所有化学反应的总和,包括消化和物质在细胞内以及不同细胞之间的运输,在这种情况下,上述细胞内的一系列反应称为中间代谢或中级代谢)。
   −
新陈代谢反应可分为[[分解代谢]]分解代谢-分解化合物(例如,通过[[细胞呼吸]]将葡萄糖分解为丙酮酸) ; 或合成代谢-合成化合物(例如蛋白质、碳水化合物、脂类和核酸)。通常,分解代谢释放能量,合成代谢消耗能量。
+
新陈代谢反应可分为分解代谢-分解化合物(例如,通过细胞呼吸将葡萄糖分解为丙酮酸) ; 或合成代谢-合成化合物(例如蛋白质、碳水化合物、脂类和核酸)。通常,分解代谢释放能量,合成代谢消耗能量。
   −
新陈代谢的化学反应被组织成代谢途径,在代谢途径中,一种化学物质通过一系列步骤转化为另一种化学物质,每一步都由特定的[[酶]]来推动。酶对新陈代谢至关重要,因为它们通过将生物体与释放能量的自发反应耦合,使生物体能够驱动需要能量的理想反应,而这些反应本身不会发生。酶起催化剂的作用——它们使反应进行得更快——它们还可以调节代谢反应的速率,例如对细胞环境的变化或其他细胞发出的信号作出反应。
+
新陈代谢的化学反应被组织成代谢途径,在代谢途径中,一种化学物质通过一系列步骤转化为另一种化学物质,每一步都由特定的酶来推动。酶对新陈代谢至关重要,因为它们通过将生物体与释放能量的自发反应耦合,使生物体能够驱动需要能量的理想反应,而这些反应本身不会发生。酶起催化剂的作用——它们使反应进行得更快——它们还可以调节代谢反应的速率,例如对细胞环境的变化或其他细胞发出的信号作出反应。
   −
特定生物体的新陈代谢系统决定了哪些物质有营养,哪些有毒。例如,一些[[原核生物]]利用硫化氢作为营养物质,然而这种气体对动物是有毒的<ref name="Physiology1">{{cite book |author=Friedrich C |title=Physiology and genetics of sulfur-oxidizing bacteria |journal=Adv Microb Physiol |volume=39 |issue= |pages=235–89 |year=1998 |series=Advances in Microbial Physiology |isbn=978-0-12-027739-1}}</ref>。生物体的[[基础代谢率]]是所有这些化学反应所消耗能量的量度。
+
特定生物体的新陈代谢系统决定了哪些物质有营养,哪些有毒。例如,一些原核生物利用硫化氢作为营养物质,然而这种气体对动物是有毒的<ref name="Physiology1">{{cite book |author=Friedrich C |title=Physiology and genetics of sulfur-oxidizing bacteria |journal=Adv Microb Physiol |volume=39 |issue= |pages=235–89 |year=1998 |series=Advances in Microbial Physiology |isbn=978-0-12-027739-1}}</ref>。生物体的基础代谢率是所有这些化学反应所消耗能量的量度。
   −
新陈代谢的一个显著特征是,不同物种之间的基本新陈代谢途径具有相似性<ref>{{cite journal | vauthors = Pace NR | title = The universal nature of biochemistry | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 98 | issue = 3 | pages = 805–8 | date = January 2001 | pmc = 33372  | bibcode = 2001PNAS...98..805P }}</ref>。例如,作为[[三羧酸循环]]中的中间体,最著名的一组羧酸存在于所有已知的生物体中,它们在单细胞细菌[[大肠杆菌]]和巨大的多细胞生物(如大象)中都能被找到<ref name=SmithE>{{cite journal | vauthors = Smith E, Morowitz HJ | title = Universality in intermediary metabolism | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 36 | pages = 13168–73 | date = September 2004 | pmid = 15340153 | pmc = 516543 | doi = 10.1073/pnas.0404922101 | bibcode = 2004PNAS..10113168S }}</ref>。 这些代谢途径的相似性很可能是由于它们在演化史的早期出现,然后又因为它们的功效而保留下来<ref name=Ebenhoh>{{cite journal | vauthors = Ebenhöh O, Heinrich R | title = Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems | journal = Bulletin of Mathematical Biology | volume = 63 | issue = 1 | pages = 21–55 | date = January 2001 | pmid = 11146883 | doi = 10.1006/bulm.2000.0197  }}</ref><ref name=Cascante>{{cite journal | vauthors = Meléndez-Hevia E, Waddell TG, Cascante M | title = The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution | journal = Journal of Molecular Evolution | volume = 43 | issue = 3 | pages = 293–303 | date = September 1996 | pmid = 8703096 | doi = 10.1007/BF02338838 | bibcode = 1996JMolE..43..293M }}</ref>。癌细胞的代谢也不同于正常细胞的代谢,这些差异可以用来寻找癌细胞治疗的靶点<ref name="Vander_Heiden_2017">{{cite journal | vauthors = Vander Heiden MG, DeBerardinis RJ | title = Understanding the Intersections between Metabolism and Cancer Biology | journal = Cell | volume = 168 | issue = 4 | pages = 657–669 | date = February 2017 | pmid = 28187287 | pmc = 5329766 | doi = 10.1016/j.cell.2016.12.039 }}</ref>。
+
新陈代谢的一个显著特征是,不同物种之间的基本新陈代谢途径具有相似性<ref>{{cite journal | vauthors = Pace NR | title = The universal nature of biochemistry | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 98 | issue = 3 | pages = 805–8 | date = January 2001 | pmc = 33372  | bibcode = 2001PNAS...98..805P }}</ref>。例如,作为三羧酸循环中的中间体,最著名的一组羧酸存在于所有已知的生物体中,它们在单细胞细菌大肠杆菌和巨大的多细胞生物(如大象)中都能被找到<ref name=SmithE>{{cite journal | vauthors = Smith E, Morowitz HJ | title = Universality in intermediary metabolism | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 36 | pages = 13168–73 | date = September 2004 | pmid = 15340153 | pmc = 516543 | doi = 10.1073/pnas.0404922101 | bibcode = 2004PNAS..10113168S }}</ref>。 这些代谢途径的相似性很可能是由于它们在演化史的早期出现,然后又因为它们的功效而保留下来<ref name=Ebenhoh>{{cite journal | vauthors = Ebenhöh O, Heinrich R | title = Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems | journal = Bulletin of Mathematical Biology | volume = 63 | issue = 1 | pages = 21–55 | date = January 2001 | pmid = 11146883 | doi = 10.1006/bulm.2000.0197  }}</ref><ref name=Cascante>{{cite journal | vauthors = Meléndez-Hevia E, Waddell TG, Cascante M | title = The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution | journal = Journal of Molecular Evolution | volume = 43 | issue = 3 | pages = 293–303 | date = September 1996 | pmid = 8703096 | doi = 10.1007/BF02338838 | bibcode = 1996JMolE..43..293M }}</ref>。癌细胞的代谢也不同于正常细胞的代谢,这些差异可以用来寻找癌细胞治疗的靶点<ref name="Vander_Heiden_2017">{{cite journal | vauthors = Vander Heiden MG, DeBerardinis RJ | title = Understanding the Intersections between Metabolism and Cancer Biology | journal = Cell | volume = 168 | issue = 4 | pages = 657–669 | date = February 2017 | pmid = 28187287 | pmc = 5329766 | doi = 10.1016/j.cell.2016.12.039 }}</ref>。
 
== 关键的生物化学成分 ==
 
== 关键的生物化学成分 ==
 
更多信息:生物分子,细胞(生物学)和生物化学
 
更多信息:生物分子,细胞(生物学)和生物化学
   −
[[File:Trimyristin-3D-vdW.png|right|thumb|upright=1.15|[[三酰甘油脂]]的结构]]
+
[[File:Trimyristin-3D-vdW.png|right|thumb|upright=1.15|三酰甘油脂的结构]]
    
[[File:Human Metabolism - Pathways.jpg|thumb|这张图表描绘了人体新陈代谢的一系列途径。]]
 
[[File:Human Metabolism - Pathways.jpg|thumb|这张图表描绘了人体新陈代谢的一系列途径。]]
   −
构成动物、植物和微生物的大部分结构由四种基本分子组成: 氨基酸、糖类化合物、核酸和脂类(通常称为脂肪)。由于这些分子对生命至关重要,新陈代谢反应要么专注于在构建细胞和组织的过程中制造这些分子,要么将这些分子作为能量来源并将其消化分解。这些生化物质可以结合在一起形成DNA和蛋白质之类的聚合物,它们都是生命必不可少的[[大分子聚合物]]<ref>{{cite journal|last=Cooper|first=Geoffrey M.|date=2000|title=The Molecular Composition of Cells|url=https://www.ncbi.nlm.nih.gov/books/NBK9879/|journal=The Cell: A Molecular Approach. 2nd Edition|language=en}}</ref>。<center>
+
构成动物、植物和微生物的大部分结构由四种基本分子组成: 氨基酸、糖类化合物、核酸和脂类(通常称为脂肪)。由于这些分子对生命至关重要,新陈代谢反应要么专注于在构建细胞和组织的过程中制造这些分子,要么将这些分子作为能量来源并将其消化分解。这些生化物质可以结合在一起形成DNA和蛋白质之类的聚合物,它们都是生命必不可少的大分子聚合物<ref>{{cite journal|last=Cooper|first=Geoffrey M.|date=2000|title=The Molecular Composition of Cells|url=https://www.ncbi.nlm.nih.gov/books/NBK9879/|journal=The Cell: A Molecular Approach. 2nd Edition|language=en}}</ref>。<center>
 
{| class="wikitable “wikitable”" style="“margin-left:" auto; margin-right: auto;”
 
{| class="wikitable “wikitable”" style="“margin-left:" auto; margin-right: auto;”
 
|-
 
|-
!分子类型 !! [[单体]]形式的名称 !! [[聚合物]]形式的名称 !! 聚合物形态的例子
+
!分子类型 !! 单体形式的名称 !! 聚合物形式的名称 !! 聚合物形态的例子
 
|-
 
|-
| 氨基酸 || 氨基酸 ||[[蛋白质]](由多肽组成)
+
| 氨基酸 || 氨基酸 ||蛋白质(由多肽组成)
|[[纤维蛋白]]和[[球状蛋白]]
+
|纤维蛋白和球状蛋白
 
|-
 
|-
| [[碳水化合物]] || [[单糖]] || [[多糖]] || [[淀粉]], [[糖原]] and [[纤维素]]
+
| 碳水化合物 || 单糖 || 多糖 || 淀粉, 糖原 and 纤维素
 
|-
 
|-
| [[核酸]] || [[核苷酸]] || [[多核苷酸]] || [[DNA]] and [[RNA]]<br />
+
| 核酸 || 核苷酸 || 多核苷酸 || DNA and RNA<br />
 
|}
 
|}
 
</center>
 
</center>
 
===氨基酸和蛋白质===
 
===氨基酸和蛋白质===
蛋白质是由氨基酸组成的线性链,它们通过[[肽键]]连接在一起。许多蛋白质是在新陈代谢中催化化学反应的酶。其他蛋白质具有结构或机械功能,例如那些形成[[细胞骨架]]的蛋白质(细胞骨架是维持细胞形状的支架系统)<ref>{{cite journal | vauthors = Michie KA, Löwe J | title = Dynamic filaments of the bacterial cytoskeleton | journal = Annual Review of Biochemistry | volume = 75 | issue =  | pages = 467–92 | year = 2006 | pmid = 16756499 | doi = 10.1146/annurev.biochem.75.103004.142452 }}</ref> 。蛋白质在[[细胞信号传导]]、[[免疫反应]]、[[细胞粘附]]、主动跨膜转运和[[细胞周期]]中也很重要<ref name="Nelson">{{cite book | last1 = Nelson | first1 = David L. | first2 = Michael M. | last2 = Cox | name-list-style = vanc | title = Lehninger Principles of Biochemistry | publisher = W. H. Freeman and company | year = 2005 | location = New York | page = [https://archive.org/details/lehningerprincip00lehn_0/page/841 841] | isbn = 978-0-7167-4339-2 | url-access = registration | url = https://archive.org/details/lehningerprincip00lehn_0/page/841 }}</ref> 。氨基酸还通过提供碳源进入细胞三羧酸循环,促进细胞的能量代谢,<ref>{{cite journal | vauthors = Kelleher JK, Bryan BM, Mallet RT, Holleran AL, Murphy AN, Fiskum G | title = Analysis of tricarboxylic acid-cycle metabolism of hepatoma cells by comparison of 14CO2 ratios | journal = The Biochemical Journal | volume = 246 | issue = 3 | pages = 633–9 | date = September 1987 | pmid = 3120698 | pmc = 1148327 | doi = 10.1042/bj2460633 }}</ref>尤其是在[[葡萄糖]]等主要能量来源匮乏或细胞发生代谢应激时<ref>{{cite journal | vauthors = Hothersall JS, Ahmed A | title = Metabolic fate of the increased yeast amino Acid uptake subsequent to catabolite derepression | journal = Journal of Amino Acids | volume = 2013 | pages = 461901 | year = 2013 | pmid = 23431419 | pmc = 3575661 | doi = 10.1155/2013/461901 }}</ref>。
+
蛋白质是由氨基酸组成的线性链,它们通过肽键连接在一起。许多蛋白质是在新陈代谢中催化化学反应的酶。其他蛋白质具有结构或机械功能,例如那些形成细胞骨架的蛋白质(细胞骨架是维持细胞形状的支架系统)<ref>{{cite journal | vauthors = Michie KA, Löwe J | title = Dynamic filaments of the bacterial cytoskeleton | journal = Annual Review of Biochemistry | volume = 75 | issue =  | pages = 467–92 | year = 2006 | pmid = 16756499 | doi = 10.1146/annurev.biochem.75.103004.142452 }}</ref> 。蛋白质在细胞信号传导、免疫反应、细胞粘附、主动跨膜转运和细胞周期中也很重要<ref name="Nelson">{{cite book | last1 = Nelson | first1 = David L. | first2 = Michael M. | last2 = Cox | name-list-style = vanc | title = Lehninger Principles of Biochemistry | publisher = W. H. Freeman and company | year = 2005 | location = New York | page = [https://archive.org/details/lehningerprincip00lehn_0/page/841 841] | isbn = 978-0-7167-4339-2 | url-access = registration | url = https://archive.org/details/lehningerprincip00lehn_0/page/841 }}</ref> 。氨基酸还通过提供碳源进入细胞三羧酸循环,促进细胞的能量代谢,<ref>{{cite journal | vauthors = Kelleher JK, Bryan BM, Mallet RT, Holleran AL, Murphy AN, Fiskum G | title = Analysis of tricarboxylic acid-cycle metabolism of hepatoma cells by comparison of 14CO2 ratios | journal = The Biochemical Journal | volume = 246 | issue = 3 | pages = 633–9 | date = September 1987 | pmid = 3120698 | pmc = 1148327 | doi = 10.1042/bj2460633 }}</ref>尤其是在葡萄糖等主要能量来源匮乏或细胞发生代谢应激时<ref>{{cite journal | vauthors = Hothersall JS, Ahmed A | title = Metabolic fate of the increased yeast amino Acid uptake subsequent to catabolite derepression | journal = Journal of Amino Acids | volume = 2013 | pages = 461901 | year = 2013 | pmid = 23431419 | pmc = 3575661 | doi = 10.1155/2013/461901 }}</ref>。
    
===脂类 ===
 
===脂类 ===
脂类是最多样化的生物化学物质。它们的主要结构用途是作为[[生物膜]]内部和外部的一部分,如[[细胞膜]],或作为能量来源<ref name="Nelson" />。脂类通常被定义为疏水性或两亲性的生物分子,但会溶解在有机溶剂中,如酒精、苯或氯仿。<ref>{{cite journal | vauthors = Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA | display-authors = 6 | title = A comprehensive classification system for lipids | journal = Journal of Lipid Research | volume = 46 | issue = 5 | pages = 839–61 | date = May 2005 | pmid = 15722563 | doi = 10.1194/jlr.E400004-JLR200 | doi-access = free }}</ref>脂肪是一大类含有脂肪酸和甘油的化合物,一个甘油分子连接到三个脂肪酸酯即称为三酰甘油酯。<ref>{{cite web|title=Lipid nomenclature Lip-1 & Lip-2|url=https://www.qmul.ac.uk/sbcs/iupac/lipid/lip1n2.html#p11|access-date=2020-06-06|website=www.qmul.ac.uk}}</ref>这种基本结构存在一些变异,包括主骨(如鞘磷脂中到鞘氨醇)和亲水基(如磷脂中的磷酸盐)。[[类固醇]],如[[固醇]],是另一类主要的脂类<ref>{{cite book|edition=8|title=Biochemistry|location=New York|isbn=978-1-4641-2610-9 | vauthors = Berg JM, Tymoczko JL, Gatto Jr GJ, Stryer L |date=8 April 2015|publisher=W. H. Freeman|pages=362}}</ref>。
+
脂类是最多样化的生物化学物质。它们的主要结构用途是作为生物膜内部和外部的一部分,如细胞膜,或作为能量来源<ref name="Nelson" />。脂类通常被定义为疏水性或两亲性的生物分子,但会溶解在有机溶剂中,如酒精、苯或氯仿。<ref>{{cite journal | vauthors = Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA | display-authors = 6 | title = A comprehensive classification system for lipids | journal = Journal of Lipid Research | volume = 46 | issue = 5 | pages = 839–61 | date = May 2005 | pmid = 15722563 | doi = 10.1194/jlr.E400004-JLR200 | doi-access = free }}</ref>脂肪是一大类含有脂肪酸和甘油的化合物,一个甘油分子连接到三个脂肪酸酯即称为三酰甘油酯。<ref>{{cite web|title=Lipid nomenclature Lip-1 & Lip-2|url=https://www.qmul.ac.uk/sbcs/iupac/lipid/lip1n2.html#p11|access-date=2020-06-06|website=www.qmul.ac.uk}}</ref>这种基本结构存在一些变异,包括主骨(如鞘磷脂中到鞘氨醇)和亲水基(如磷脂中的磷酸盐)。类固醇,如固醇,是另一类主要的脂类<ref>{{cite book|edition=8|title=Biochemistry|location=New York|isbn=978-1-4641-2610-9 | vauthors = Berg JM, Tymoczko JL, Gatto Jr GJ, Stryer L |date=8 April 2015|publisher=W. H. Freeman|pages=362}}</ref>。
 
===碳水化合物===
 
===碳水化合物===
   第56行: 第56行:  
DNA和RNA这两种核酸是核苷酸的聚合物。每个核苷酸都是由一个磷酸连接到核糖或脱氧核糖糖基上形成的,而核糖或脱氧核糖糖基又连接到含氮碱基上。核酸对于遗传信息的储存和使用,以及通过转录和蛋白质生物合成过程对其进行解释至关重要。这些信息受到DNA修复机制的保护<ref name="Nelson" />,并通过DNA复制进行传播。许多病毒都有RNA基因组,如HIV病毒,它利用[[逆转录]]从其病毒RNA基因组中创建DNA模板。核糖体和核糖体等核糖体中的RNA类似于酶<ref>{{cite journal | vauthors = Sierra S, Kupfer B, Kaiser R | title = Basics of the virology of HIV-1 and its replication | journal = Journal of Clinical Virology | volume = 34 | issue = 4 | pages = 233–44 | date = December 2005 | pmid = 16198625 | doi = 10.1016/j.jcv.2005.09.004 }}</ref>,因为它可以催化化学反应。单个核苷是通过将核碱基连接到核糖上制成的。这些碱基是含氮的杂环,分为嘌呤或嘧啶。核苷酸还在代谢基团转移反应中充当辅酶<ref name="Wimmer">{{cite journal | vauthors = Wimmer MJ, Rose IA | title = Mechanisms of enzyme-catalyzed group transfer reactions | journal = Annual Review of Biochemistry | volume = 47 | issue =  | pages = 1031–78 | year = 1978 | pmid = 354490 | doi = 10.1146/annurev.bi.47.070178.005123 }}</ref>。
 
DNA和RNA这两种核酸是核苷酸的聚合物。每个核苷酸都是由一个磷酸连接到核糖或脱氧核糖糖基上形成的,而核糖或脱氧核糖糖基又连接到含氮碱基上。核酸对于遗传信息的储存和使用,以及通过转录和蛋白质生物合成过程对其进行解释至关重要。这些信息受到DNA修复机制的保护<ref name="Nelson" />,并通过DNA复制进行传播。许多病毒都有RNA基因组,如HIV病毒,它利用[[逆转录]]从其病毒RNA基因组中创建DNA模板。核糖体和核糖体等核糖体中的RNA类似于酶<ref>{{cite journal | vauthors = Sierra S, Kupfer B, Kaiser R | title = Basics of the virology of HIV-1 and its replication | journal = Journal of Clinical Virology | volume = 34 | issue = 4 | pages = 233–44 | date = December 2005 | pmid = 16198625 | doi = 10.1016/j.jcv.2005.09.004 }}</ref>,因为它可以催化化学反应。单个核苷是通过将核碱基连接到核糖上制成的。这些碱基是含氮的杂环,分为嘌呤或嘧啶。核苷酸还在代谢基团转移反应中充当辅酶<ref name="Wimmer">{{cite journal | vauthors = Wimmer MJ, Rose IA | title = Mechanisms of enzyme-catalyzed group transfer reactions | journal = Annual Review of Biochemistry | volume = 47 | issue =  | pages = 1031–78 | year = 1978 | pmid = 354490 | doi = 10.1146/annurev.bi.47.070178.005123 }}</ref>。
 
===辅酶===
 
===辅酶===
[[File:Acetyl-CoA-2D.svg|thumb|right|upright=1.35|[[乙酰辅酶A]]结构。可转移的[[乙酰基]]与最左边的硫原子成键结合。]]
+
[[File:Acetyl-CoA-2D.svg|thumb|right|upright=1.35|乙酰辅酶A结构。可转移的乙酰基与最左边的硫原子成键结合。]]
    
新陈代谢涉及大量的化学反应,但大多数属于几种基本类型的反应,涉及原子的官能团及其键在分子内的转移。这种常见的化学反应使细胞能够用一小套代谢中间体在不同反应之间携带化学基团<ref>{{cite journal | vauthors = Mitchell P | title = The Ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems | journal = European Journal of Biochemistry | volume = 95 | issue = 1 | pages = 1–20 | date = March 1979 | pmid = 378655 | doi = 10.1111/j.1432-1033.1979.tb12934.x }}</ref>。这些基团转移中间体称为辅酶<ref name="Wimmer" />。每一类基团转移反应都是由一种特定的辅酶进行的,它是一组产生它的酶和消耗它的酶的底物。因此,这些辅酶不断地被制造、消耗,然后循环利用<ref name="Dimroth">{{cite journal | vauthors = Dimroth P, von Ballmoos C, Meier T | title = Catalytic and mechanical cycles in F-ATP synthases. Fourth in the Cycles Review Series | journal = EMBO Reports | volume = 7 | issue = 3 | pages = 276–82 | date = March 2006 | pmid = 16607397 | pmc = 1456893 | doi = 10.1038/sj.embor.7400646 }}</ref>。
 
新陈代谢涉及大量的化学反应,但大多数属于几种基本类型的反应,涉及原子的官能团及其键在分子内的转移。这种常见的化学反应使细胞能够用一小套代谢中间体在不同反应之间携带化学基团<ref>{{cite journal | vauthors = Mitchell P | title = The Ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems | journal = European Journal of Biochemistry | volume = 95 | issue = 1 | pages = 1–20 | date = March 1979 | pmid = 378655 | doi = 10.1111/j.1432-1033.1979.tb12934.x }}</ref>。这些基团转移中间体称为辅酶<ref name="Wimmer" />。每一类基团转移反应都是由一种特定的辅酶进行的,它是一组产生它的酶和消耗它的酶的底物。因此,这些辅酶不断地被制造、消耗,然后循环利用<ref name="Dimroth">{{cite journal | vauthors = Dimroth P, von Ballmoos C, Meier T | title = Catalytic and mechanical cycles in F-ATP synthases. Fourth in the Cycles Review Series | journal = EMBO Reports | volume = 7 | issue = 3 | pages = 276–82 | date = March 2006 | pmid = 16607397 | pmc = 1456893 | doi = 10.1038/sj.embor.7400646 }}</ref>。
第62行: 第62行:  
其中一种中心辅酶是三磷酸腺苷(ATP),它是细胞的通用能源货币。这种核苷酸在不同的化学反应之间传递化学能。细胞中只有少量的ATP,但由于ATP是不断再生的,所以人体每天可以使用大约相当于自身重量的ATP<ref name="Dimroth" />。ATP是分解代谢和合成代谢之间的桥梁。分解代谢分解分子,合成代谢则将它们组合在一起。分解反应产生ATP,合成代谢反应则消耗ATP。它也是磷酸化反应中磷酸基团的载体<ref>{{cite journal | vauthors = Bonora M, Patergnani S, Rimessi A, De Marchi E, Suski JM, Bononi A, Giorgi C, Marchi S, Missiroli S, Poletti F, Wieckowski MR, Pinton P | display-authors = 6 | title = ATP synthesis and storage | journal = Purinergic Signalling | volume = 8 | issue = 3 | pages = 343–57 | date = September 2012 | pmid = 22528680 | pmc = 3360099 | doi = 10.1007/s11302-012-9305-8 }}</ref>。
 
其中一种中心辅酶是三磷酸腺苷(ATP),它是细胞的通用能源货币。这种核苷酸在不同的化学反应之间传递化学能。细胞中只有少量的ATP,但由于ATP是不断再生的,所以人体每天可以使用大约相当于自身重量的ATP<ref name="Dimroth" />。ATP是分解代谢和合成代谢之间的桥梁。分解代谢分解分子,合成代谢则将它们组合在一起。分解反应产生ATP,合成代谢反应则消耗ATP。它也是磷酸化反应中磷酸基团的载体<ref>{{cite journal | vauthors = Bonora M, Patergnani S, Rimessi A, De Marchi E, Suski JM, Bononi A, Giorgi C, Marchi S, Missiroli S, Poletti F, Wieckowski MR, Pinton P | display-authors = 6 | title = ATP synthesis and storage | journal = Purinergic Signalling | volume = 8 | issue = 3 | pages = 343–57 | date = September 2012 | pmid = 22528680 | pmc = 3360099 | doi = 10.1007/s11302-012-9305-8 }}</ref>。
   −
[[维生素]]是一类细胞不能合成的微量有机化合物。在人体营养中,大多数维生素经过修饰后都具有辅酶的功能,例如,所有水溶性维生素在细胞中使用时都会被磷酸化或与核苷酸偶联<ref>{{cite journal|last1=Berg|first1=Jeremy M.|last2=Tymoczko|first2=John L.|last3=Stryer|first3=Lubert|date=2002|title=Vitamins Are Often Precursors to Coenzymes|url=https://www.ncbi.nlm.nih.gov/books/NBK22549/|journal=Biochemistry. 5th Edition|language=en}}</ref>。[[烟酰胺腺嘌呤二核苷酸]](NAD<sup>+</sup>)是维生素B<sub>3</sub>(烟酸)的衍生物,它是一种重要的辅酶,起着氢接受器的作用。数百种不同类型的脱氢酶从其底物中去除电子,并将NAD<sup>+</sup>还原成NADH。这种还原形式的辅酶是细胞中任何需要还原其底物的还原酶的底物。烟酰胺腺嘌呤二核苷酸在细胞中以两种相关形式存在<ref>{{cite journal | vauthors = Pollak N, Dölle C, Ziegler M | title = The power to reduce: pyridine nucleotides--small molecules with a multitude of functions | journal = The Biochemical Journal | volume = 402 | issue = 2 | pages = 205–18 | date = March 2007 | pmid = 17295611 | pmc = 1798440 | doi = 10.1042/BJ20061638 }}</ref>,即NADH和NADPH。NAD <sup>+</sup>/NADH 形式在分解代谢反应中起重要作用,而 NADP <sup>+</sup>/NADPH 形式在分解代谢反应中起重要作用<ref>{{cite book|last=Fatih|first=Yildiz | name-list-style = vanc |title=Advances in food biochemistry|publisher=CRC Press|year=2009|isbn=978-1-4200-0769-5|location=Boca Raton|pages=228}}</ref>。
+
维生素是一类细胞不能合成的微量有机化合物。在人体营养中,大多数维生素经过修饰后都具有辅酶的功能,例如,所有水溶性维生素在细胞中使用时都会被磷酸化或与核苷酸偶联<ref>{{cite journal|last1=Berg|first1=Jeremy M.|last2=Tymoczko|first2=John L.|last3=Stryer|first3=Lubert|date=2002|title=Vitamins Are Often Precursors to Coenzymes|url=https://www.ncbi.nlm.nih.gov/books/NBK22549/|journal=Biochemistry. 5th Edition|language=en}}</ref>。烟酰胺腺嘌呤二核苷酸(NAD<sup>+</sup>)是维生素B<sub>3</sub>(烟酸)的衍生物,它是一种重要的辅酶,起着氢接受器的作用。数百种不同类型的脱氢酶从其底物中去除电子,并将NAD<sup>+</sup>还原成NADH。这种还原形式的辅酶是细胞中任何需要还原其底物的还原酶的底物。烟酰胺腺嘌呤二核苷酸在细胞中以两种相关形式存在<ref>{{cite journal | vauthors = Pollak N, Dölle C, Ziegler M | title = The power to reduce: pyridine nucleotides--small molecules with a multitude of functions | journal = The Biochemical Journal | volume = 402 | issue = 2 | pages = 205–18 | date = March 2007 | pmid = 17295611 | pmc = 1798440 | doi = 10.1042/BJ20061638 }}</ref>,即NADH和NADPH。NAD <sup>+</sup>/NADH 形式在分解代谢反应中起重要作用,而 NADP <sup>+</sup>/NADPH 形式在分解代谢反应中起重要作用<ref>{{cite book|last=Fatih|first=Yildiz | name-list-style = vanc |title=Advances in food biochemistry|publisher=CRC Press|year=2009|isbn=978-1-4200-0769-5|location=Boca Raton|pages=228}}</ref>。
[[File:1GZX Haemoglobin.png|thumb|upright=1.35|right|The structure of iron-containing [[hemoglobin]]. 含铁[[血红蛋白]]的结构。蛋白质亚基为红色和蓝色,含铁血红素基为绿色。]]
+
[[File:1GZX Haemoglobin.png|thumb|upright=1.35|right|The structure of iron-containing hemoglobin]]. 含铁血红蛋白的结构。蛋白质亚基为红色和蓝色,含铁血红素基为绿色。]]
    
===矿物质和辅因子===
 
===矿物质和辅因子===
 
无机元素在新陈代谢中起着关键作用; 有些元素含量丰富(例如:钠和钾) ,而另一些元素则在微量浓度下发挥作用。人的体重约99%是由碳、氮、钙、钠、氯、钾、氢、磷、氧和硫等元素组成。有机化合物(蛋白质、脂类和碳水化合物)含有大部分的碳和氮;大部分的氧和氢以水的形式存在。
 
无机元素在新陈代谢中起着关键作用; 有些元素含量丰富(例如:钠和钾) ,而另一些元素则在微量浓度下发挥作用。人的体重约99%是由碳、氮、钙、钠、氯、钾、氢、磷、氧和硫等元素组成。有机化合物(蛋白质、脂类和碳水化合物)含有大部分的碳和氮;大部分的氧和氢以水的形式存在。
   −
丰富的无机元素可以电解质。最重要的离子是钠、钾、钙、镁、氯化物、磷酸盐和有机离子重碳酸盐。维持细胞膜上精确的离子梯度可以维持[[渗透压]]和 ph 值。离子对于神经和肌肉功能也是至关重要的<ref>{{cite book |date=| chapter = Electrolyte Balance | chapter-url=https://opentextbc.ca/anatomyandphysiology/chapter/26-3-electrolyte-balance/ | title = Anatomy and Physiology | publisher = OpenStax |access-date=23 June 2020 }}</ref>,因为这些组织中的动作电位是由细胞外液和细胞液之间的电解质交换产生的。电解质通过细胞膜上称为离子通道的蛋白质进入和离开细胞<ref>{{cite book |last1=Lodish |first1=Harvey |last2=Berk |first2=Arnold |last3=Zipursky |first3=S. Lawrence |last4=Matsudaira |first4=Paul |last5=Baltimore |first5=David |last6=Darnell |first6=James | name-list-style = vanc |date=2000| chapter =The Action Potential and Conduction of Electric Impulses|chapter-url= https://www.ncbi.nlm.nih.gov/books/NBK21668/ |title =Molecular Cell Biology | edition = 4th |language=en|via=NCBI}}</ref> 。例如,肌肉收缩依赖于钙、钠和钾通过细胞膜和T管道中的离子通道的运动<ref>{{cite journal | vauthors = Dulhunty AF | title = Excitation-contraction coupling from the 1950s into the new millennium | journal = Clinical and Experimental Pharmacology & Physiology | volume = 33 | issue = 9 | pages = 763–72 | date = September 2006 | pmid = 16922804 | doi = 10.1111/j.1440-1681.2006.04441.x }}</ref>。
+
丰富的无机元素可以电解质。最重要的离子是钠、钾、钙、镁、氯化物、磷酸盐和有机离子重碳酸盐。维持细胞膜上精确的离子梯度可以维持渗透压和 ph 值。离子对于神经和肌肉功能也是至关重要的<ref>{{cite book |date=| chapter = Electrolyte Balance | chapter-url=https://opentextbc.ca/anatomyandphysiology/chapter/26-3-electrolyte-balance/ | title = Anatomy and Physiology | publisher = OpenStax |access-date=23 June 2020 }}</ref>,因为这些组织中的动作电位是由细胞外液和细胞液之间的电解质交换产生的。电解质通过细胞膜上称为离子通道的蛋白质进入和离开细胞<ref>{{cite book |last1=Lodish |first1=Harvey |last2=Berk |first2=Arnold |last3=Zipursky |first3=S. Lawrence |last4=Matsudaira |first4=Paul |last5=Baltimore |first5=David |last6=Darnell |first6=James | name-list-style = vanc |date=2000| chapter =The Action Potential and Conduction of Electric Impulses|chapter-url= https://www.ncbi.nlm.nih.gov/books/NBK21668/ |title =Molecular Cell Biology | edition = 4th |language=en|via=NCBI}}</ref> 。例如,肌肉收缩依赖于钙、钠和钾通过细胞膜和T管道中的离子通道的运动<ref>{{cite journal | vauthors = Dulhunty AF | title = Excitation-contraction coupling from the 1950s into the new millennium | journal = Clinical and Experimental Pharmacology & Physiology | volume = 33 | issue = 9 | pages = 763–72 | date = September 2006 | pmid = 16922804 | doi = 10.1111/j.1440-1681.2006.04441.x }}</ref>。
    
过渡金属通常以微量元素的形式存在于生物体内,其中锌和铁最为丰富<ref>{{cite book| vauthors = Torres-Romero JC, Alvarez-Sánchez ME, Fernández-Martín K, Alvarez-Sánchez LC, Arana-Argáez V, Ramírez-Camacho M, Lara-Riegos J | chapter=Zinc Efflux in Trichomonas vaginalis: In Silico Identification and Expression Analysis of CDF-Like Genes|date=2018| title =Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues|pages=149–168| veditors = Olivares-Quiroz L, Resendis-Antonio O |place=Cham|publisher=Springer International Publishing|language=en|isbn=978-3-319-73975-5 }}</ref>。这些金属元素在某些蛋白质中作为辅因子,是催化酶等酶和血红蛋白等氧载体蛋白活性所必需的金属辅因子。<ref>{{cite book|last=Craig Will|first=Leonard Ashley | name-list-style = vanc |title=Manufacturing Engineering & Technology|publisher=Scientific e-Resources|year=2019|isbn=9781839472428|location=Waltham Abbey|pages=190–196}}</ref>金属辅因子与蛋白质中的特定位点紧密结合,虽然在催化过程中酶的辅因子可以被改变,但在催化反应结束时,它们总是恢复到原来的状态。金属微量营养素由特定的转运体带入生物体内,不用时与储存蛋白如铁蛋白或金属硫蛋白结合<ref>{{cite journal | vauthors = Cousins RJ, Liuzzi JP, Lichten LA | title = Mammalian zinc transport, trafficking, and signals | journal = The Journal of Biological Chemistry | volume = 281 | issue = 34 | pages = 24085–9 | date = August 2006 | pmid = 16793761 | doi = 10.1074/jbc.R600011200 | url = https://www.jbc.org/content/281/34/24085 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Dunn LL, Suryo Rahmanto Y, Richardson DR | title = Iron uptake and metabolism in the new millennium | journal = Trends in Cell Biology | volume = 17 | issue = 2 | pages = 93–100 | date = February 2007 | pmid = 17194590 | doi = 10.1016/j.tcb.2006.12.003 }}</ref>。
 
过渡金属通常以微量元素的形式存在于生物体内,其中锌和铁最为丰富<ref>{{cite book| vauthors = Torres-Romero JC, Alvarez-Sánchez ME, Fernández-Martín K, Alvarez-Sánchez LC, Arana-Argáez V, Ramírez-Camacho M, Lara-Riegos J | chapter=Zinc Efflux in Trichomonas vaginalis: In Silico Identification and Expression Analysis of CDF-Like Genes|date=2018| title =Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues|pages=149–168| veditors = Olivares-Quiroz L, Resendis-Antonio O |place=Cham|publisher=Springer International Publishing|language=en|isbn=978-3-319-73975-5 }}</ref>。这些金属元素在某些蛋白质中作为辅因子,是催化酶等酶和血红蛋白等氧载体蛋白活性所必需的金属辅因子。<ref>{{cite book|last=Craig Will|first=Leonard Ashley | name-list-style = vanc |title=Manufacturing Engineering & Technology|publisher=Scientific e-Resources|year=2019|isbn=9781839472428|location=Waltham Abbey|pages=190–196}}</ref>金属辅因子与蛋白质中的特定位点紧密结合,虽然在催化过程中酶的辅因子可以被改变,但在催化反应结束时,它们总是恢复到原来的状态。金属微量营养素由特定的转运体带入生物体内,不用时与储存蛋白如铁蛋白或金属硫蛋白结合<ref>{{cite journal | vauthors = Cousins RJ, Liuzzi JP, Lichten LA | title = Mammalian zinc transport, trafficking, and signals | journal = The Journal of Biological Chemistry | volume = 281 | issue = 34 | pages = 24085–9 | date = August 2006 | pmid = 16793761 | doi = 10.1074/jbc.R600011200 | url = https://www.jbc.org/content/281/34/24085 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Dunn LL, Suryo Rahmanto Y, Richardson DR | title = Iron uptake and metabolism in the new millennium | journal = Trends in Cell Biology | volume = 17 | issue = 2 | pages = 93–100 | date = February 2007 | pmid = 17194590 | doi = 10.1016/j.tcb.2006.12.003 }}</ref>。
 +
 
==分解代谢==
 
==分解代谢==
 
分解代谢是指分解大分子的一系列代谢过程。其中包括分解和氧化食物分子。分解代谢反应的目的是为构建分子的合成代谢反应提供所需的能量和成分。这些分解代谢反应的确切性质因生物体而异<ref name="Alberts 2002">{{cite book |last1=Alberts|first1=Bruce|last2=Johnson|first2=Alexander|last3=Lewis|first3=Julian|last4=Raff|first4=Martin|last5=Roberts|first5=Keith|last6=Walter|first6=Peter| name-list-style = vanc |date=2002|chapter =How Cells Obtain Energy from Food|url=https://www.ncbi.nlm.nih.gov/books/NBK26882/|title =Molecular Biology of the Cell | edition = 4th |language=en|via=NCBI}}</ref>,生物体可以根据它们的能量和碳的来源(其主要营养组)进行分类,如下表所示。有机养生物把有机分子作为能量来源,而岩养生物利用无机基质,光养生物利用阳光(获得化学能)<ref>{{cite journal|last=Raven|first=Ja|date=2009-09-03|title=Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments|url=http://www.int-res.com/abstracts/ame/v56/n2-3/p177-192/|journal=Aquatic Microbial Ecology|language=en|volume=56|pages=177–192|doi=10.3354/ame01315|issn=0948-3055|doi-access=free}}</ref> 。然而,所有这些不同形式的新陈代谢都依赖于氧化还原反应,这些反应涉及电子从还原的供体分子(如有机分子,水,氨,硫化氢或亚铁离子)转移到受体分子(如氧,硝酸盐或硫酸盐)。在动物中,这些反应涉及复杂的有机分子,它们被分解成更简单的分子,如二氧化碳和水。在诸如植物和蓝藻这样的光合生物体中,这些电子转移反应不释放能量,而是用来储存从阳光中吸收的能量<ref name="Nelson2004">{{cite journal | vauthors = Nelson N, Ben-Shem A | title = The complex architecture of oxygenic photosynthesis | journal = Nature Reviews. Molecular Cell Biology | volume = 5 | issue = 12 | pages = 971–82 | date = December 2004 | pmid = 15573135 | doi = 10.1038/nrm1525 }}</ref>。
 
分解代谢是指分解大分子的一系列代谢过程。其中包括分解和氧化食物分子。分解代谢反应的目的是为构建分子的合成代谢反应提供所需的能量和成分。这些分解代谢反应的确切性质因生物体而异<ref name="Alberts 2002">{{cite book |last1=Alberts|first1=Bruce|last2=Johnson|first2=Alexander|last3=Lewis|first3=Julian|last4=Raff|first4=Martin|last5=Roberts|first5=Keith|last6=Walter|first6=Peter| name-list-style = vanc |date=2002|chapter =How Cells Obtain Energy from Food|url=https://www.ncbi.nlm.nih.gov/books/NBK26882/|title =Molecular Biology of the Cell | edition = 4th |language=en|via=NCBI}}</ref>,生物体可以根据它们的能量和碳的来源(其主要营养组)进行分类,如下表所示。有机养生物把有机分子作为能量来源,而岩养生物利用无机基质,光养生物利用阳光(获得化学能)<ref>{{cite journal|last=Raven|first=Ja|date=2009-09-03|title=Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments|url=http://www.int-res.com/abstracts/ame/v56/n2-3/p177-192/|journal=Aquatic Microbial Ecology|language=en|volume=56|pages=177–192|doi=10.3354/ame01315|issn=0948-3055|doi-access=free}}</ref> 。然而,所有这些不同形式的新陈代谢都依赖于氧化还原反应,这些反应涉及电子从还原的供体分子(如有机分子,水,氨,硫化氢或亚铁离子)转移到受体分子(如氧,硝酸盐或硫酸盐)。在动物中,这些反应涉及复杂的有机分子,它们被分解成更简单的分子,如二氧化碳和水。在诸如植物和蓝藻这样的光合生物体中,这些电子转移反应不释放能量,而是用来储存从阳光中吸收的能量<ref name="Nelson2004">{{cite journal | vauthors = Nelson N, Ben-Shem A | title = The complex architecture of oxygenic photosynthesis | journal = Nature Reviews. Molecular Cell Biology | volume = 5 | issue = 12 | pages = 971–82 | date = December 2004 | pmid = 15573135 | doi = 10.1038/nrm1525 }}</ref>。
第118行: 第119行:  
微生物简单直接地将消化酶分泌到周围环境中<ref>{{cite journal | vauthors = Häse CC, Finkelstein RA | title = Bacterial extracellular zinc-containing metalloproteases | journal = Microbiological Reviews | volume = 57 | issue = 4 | pages = 823–37 | date = December 1993 | pmid = 8302217 | pmc = 372940 | doi = 10.1128/MMBR.57.4.823-837.1993 }}</ref><ref>{{cite journal | vauthors = Gupta R, Gupta N, Rathi P | title = Bacterial lipases: an overview of production, purification and biochemical properties | journal = Applied Microbiology and Biotechnology | volume = 64 | issue = 6 | pages = 763–81 | date = June 2004 | pmid = 14966663 | doi = 10.1007/s00253-004-1568-8  }}</ref>,而动物必须通过它们肠道(包括胃、胰腺和唾液腺)中的特定细胞分泌这些酶。<ref>{{cite journal | vauthors = Hoyle T | title = The digestive system: linking theory and practice | journal = British Journal of Nursing | volume = 6 | issue = 22 | pages = 1285–91 | year = 1997 | pmid = 9470654 | doi = 10.12968/bjon.1997.6.22.1285 }}</ref>这些细胞外酶释放的氨基酸或糖通过活性转运蛋白被泵入细胞内<ref>{{cite journal | vauthors = Souba WW, Pacitti AJ | title = How amino acids get into cells: mechanisms, models, menus, and mediators | journal = JPEN. Journal of Parenteral and Enteral Nutrition | volume = 16 | issue = 6 | pages = 569–78 | year = 1992 | pmid = 1494216 | doi = 10.1177/0148607192016006569 }}</ref><ref>{{cite journal | vauthors = Barrett MP, Walmsley AR, Gould GW | title = Structure and function of facilitative sugar transporters | journal = Current Opinion in Cell Biology | volume = 11 | issue = 4 | pages = 496–502 | date = August 1999 | pmid = 10449337 | doi = 10.1016/S0955-0674(99)80072-6 }}</ref>。
 
微生物简单直接地将消化酶分泌到周围环境中<ref>{{cite journal | vauthors = Häse CC, Finkelstein RA | title = Bacterial extracellular zinc-containing metalloproteases | journal = Microbiological Reviews | volume = 57 | issue = 4 | pages = 823–37 | date = December 1993 | pmid = 8302217 | pmc = 372940 | doi = 10.1128/MMBR.57.4.823-837.1993 }}</ref><ref>{{cite journal | vauthors = Gupta R, Gupta N, Rathi P | title = Bacterial lipases: an overview of production, purification and biochemical properties | journal = Applied Microbiology and Biotechnology | volume = 64 | issue = 6 | pages = 763–81 | date = June 2004 | pmid = 14966663 | doi = 10.1007/s00253-004-1568-8  }}</ref>,而动物必须通过它们肠道(包括胃、胰腺和唾液腺)中的特定细胞分泌这些酶。<ref>{{cite journal | vauthors = Hoyle T | title = The digestive system: linking theory and practice | journal = British Journal of Nursing | volume = 6 | issue = 22 | pages = 1285–91 | year = 1997 | pmid = 9470654 | doi = 10.12968/bjon.1997.6.22.1285 }}</ref>这些细胞外酶释放的氨基酸或糖通过活性转运蛋白被泵入细胞内<ref>{{cite journal | vauthors = Souba WW, Pacitti AJ | title = How amino acids get into cells: mechanisms, models, menus, and mediators | journal = JPEN. Journal of Parenteral and Enteral Nutrition | volume = 16 | issue = 6 | pages = 569–78 | year = 1992 | pmid = 1494216 | doi = 10.1177/0148607192016006569 }}</ref><ref>{{cite journal | vauthors = Barrett MP, Walmsley AR, Gould GW | title = Structure and function of facilitative sugar transporters | journal = Current Opinion in Cell Biology | volume = 11 | issue = 4 | pages = 496–502 | date = August 1999 | pmid = 10449337 | doi = 10.1016/S0955-0674(99)80072-6 }}</ref>。
   −
[[File:Catabolism schematic.svg|thumb|left|upright=1.35|[[蛋白质]],[[碳水化合物]]和[[脂肪]]分解代谢的简化概述 ]]
+
[[File:Catabolism schematic.svg|thumb|left|upright=1.35|蛋白质,碳水化合物和脂肪分解代谢的简化概述 ]]
      第137行: 第138行:  
氧化磷酸化中,通过如柠檬酸循环等代谢途径,电子从被消化吸收的食物分子上转移到氧气上,并将产生的能量以ATP的方式储存起来。在真核生物中,这一过程是通过线粒体膜上的一系列膜蛋白来完成的,被称为电子传递链。而在原核生物中,这些蛋白质存在于细胞的内膜中。<ref>{{cite journal | vauthors = Hosler JP, Ferguson-Miller S, Mills DA | title = Energy transduction: proton transfer through the respiratory complexes | journal = Annual Review of Biochemistry | volume = 75 | issue =  | pages = 165–87 | year = 2006 | pmid = 16756489 | pmc = 2659341 | doi = 10.1146/annurev.biochem.75.062003.101730 }}</ref>这些蛋白质利用电子从还原性分子(如NADH)传递到氧气所释放的能量来泵送质子穿过细胞膜<ref>{{cite journal | vauthors = Schultz BE, Chan SI | title = Structures and proton-pumping strategies of mitochondrial respiratory enzymes | journal = Annual Review of Biophysics and Biomolecular Structure | volume = 30 | issue =  | pages = 23–65 | year = 2001 | pmid = 11340051 | doi = 10.1146/annurev.biophys.30.1.23 | url = https://authors.library.caltech.edu/1623/1/SCHarbbs01.pdf }}</ref>。
 
氧化磷酸化中,通过如柠檬酸循环等代谢途径,电子从被消化吸收的食物分子上转移到氧气上,并将产生的能量以ATP的方式储存起来。在真核生物中,这一过程是通过线粒体膜上的一系列膜蛋白来完成的,被称为电子传递链。而在原核生物中,这些蛋白质存在于细胞的内膜中。<ref>{{cite journal | vauthors = Hosler JP, Ferguson-Miller S, Mills DA | title = Energy transduction: proton transfer through the respiratory complexes | journal = Annual Review of Biochemistry | volume = 75 | issue =  | pages = 165–87 | year = 2006 | pmid = 16756489 | pmc = 2659341 | doi = 10.1146/annurev.biochem.75.062003.101730 }}</ref>这些蛋白质利用电子从还原性分子(如NADH)传递到氧气所释放的能量来泵送质子穿过细胞膜<ref>{{cite journal | vauthors = Schultz BE, Chan SI | title = Structures and proton-pumping strategies of mitochondrial respiratory enzymes | journal = Annual Review of Biophysics and Biomolecular Structure | volume = 30 | issue =  | pages = 23–65 | year = 2001 | pmid = 11340051 | doi = 10.1146/annurev.biophys.30.1.23 | url = https://authors.library.caltech.edu/1623/1/SCHarbbs01.pdf }}</ref>。
   −
[[File:ATPsyn.gif|thumb|right|[[ATP合成酶]]的作用机制。ATP 显示为红色,ADP 和磷酸显示为粉红色,转柄亚基显示为黑色]]
+
[[File:ATPsyn.gif|thumb|right|ATP合成酶的作用机制。ATP 显示为红色,ADP 和磷酸显示为粉红色,转柄亚基显示为黑色]]
    
将质子泵出线粒体,会在膜上形成质子浓度差,产生电化学梯度。<ref>{{cite journal | vauthors = Capaldi RA, Aggeler R | title = Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor | journal = Trends in Biochemical Sciences | volume = 27 | issue = 3 | pages = 154–60 | date = March 2002 | pmid = 11893513 | doi = 10.1016/S0968-0004(01)02051-5 }}</ref>这种力量促使质子通过ATP合成酶的基座回到线粒体中。质子的流动使柄亚基旋转,从而改变合成酶域的活性位点的形状,使二磷酸腺苷磷酸化--变成ATP<ref name="Dimroth" />。
 
将质子泵出线粒体,会在膜上形成质子浓度差,产生电化学梯度。<ref>{{cite journal | vauthors = Capaldi RA, Aggeler R | title = Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor | journal = Trends in Biochemical Sciences | volume = 27 | issue = 3 | pages = 154–60 | date = March 2002 | pmid = 11893513 | doi = 10.1016/S0968-0004(01)02051-5 }}</ref>这种力量促使质子通过ATP合成酶的基座回到线粒体中。质子的流动使柄亚基旋转,从而改变合成酶域的活性位点的形状,使二磷酸腺苷磷酸化--变成ATP<ref name="Dimroth" />。
第153行: 第154行:  
在许多生物体中,太阳能的获取在原理上类似于氧化磷酸化,因为它涉及到以质子浓度梯度的形式储存能量。这种质子动力驱动 ATP 的合成<ref>{{cite book |last1=Alberts|first1=Bruce|last2=Johnson|first2=Alexander|last3=Lewis|first3=Julian|last4=Raff|first4=Martin|last5=Roberts|first5=Keith|last6=Walter|first6=Peter | name-list-style = vanc |date=2002|chapter =Energy Conversion: Mitochondria and Chloroplasts|url=https://www.ncbi.nlm.nih.gov/books/NBK21063/|title =Molecular Biology of the Cell. 4th edition|language=en}}</ref> 。驱动这种电子传递链所需的电子来自于聚光蛋白质,这种蛋白质被叫做光合反应中心。根据存在的光合色素的性质,反应中心分为两种类型。大多数光合细菌只有一种类型,而植物和蓝藻有两种类型<ref>{{cite journal | vauthors = Allen JP, Williams JC | title = Photosynthetic reaction centers | journal = FEBS Letters | volume = 438 | issue = 1–2 | pages = 5–9 | date = October 1998 | pmid = 9821949 | doi = 10.1016/S0014-5793(98)01245-9 }}</ref>。
 
在许多生物体中,太阳能的获取在原理上类似于氧化磷酸化,因为它涉及到以质子浓度梯度的形式储存能量。这种质子动力驱动 ATP 的合成<ref>{{cite book |last1=Alberts|first1=Bruce|last2=Johnson|first2=Alexander|last3=Lewis|first3=Julian|last4=Raff|first4=Martin|last5=Roberts|first5=Keith|last6=Walter|first6=Peter | name-list-style = vanc |date=2002|chapter =Energy Conversion: Mitochondria and Chloroplasts|url=https://www.ncbi.nlm.nih.gov/books/NBK21063/|title =Molecular Biology of the Cell. 4th edition|language=en}}</ref> 。驱动这种电子传递链所需的电子来自于聚光蛋白质,这种蛋白质被叫做光合反应中心。根据存在的光合色素的性质,反应中心分为两种类型。大多数光合细菌只有一种类型,而植物和蓝藻有两种类型<ref>{{cite journal | vauthors = Allen JP, Williams JC | title = Photosynthetic reaction centers | journal = FEBS Letters | volume = 438 | issue = 1–2 | pages = 5–9 | date = October 1998 | pmid = 9821949 | doi = 10.1016/S0014-5793(98)01245-9 }}</ref>。
   −
在植物、藻类和蓝藻中,光系统 II 利用光能将电子从水中移走,释放出氧气。然后电子流向细胞色素b6f蛋白复合体,后者利用它们的能量穿过叶绿体中的类囊体膜,泵入质子<ref name=Nelson2004/>。这些质子在驱动ATP合成酶时通过膜向后移动,就像之前一样。然后电子流经光系统I,可以用来减少辅酶NADP< sup > + </sup ><ref>{{cite journal | vauthors = Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T | title = Cyclic electron flow around photosystem I is essential for photosynthesis | journal = Nature | volume = 429 | issue = 6991 | pages = 579–82 | date = June 2004 | pmid = 15175756 | doi = 10.1038/nature02598 | bibcode = 2004Natur.429..579M }}</ref>。这些辅酶可用于[[卡尔文循环]](下文将对此进行讨论),或被循环用于进一步生成ATP。
+
在植物、藻类和蓝藻中,光系统 II 利用光能将电子从水中移走,释放出氧气。然后电子流向细胞色素b6f蛋白复合体,后者利用它们的能量穿过叶绿体中的类囊体膜,泵入质子<ref name=Nelson2004/>。这些质子在驱动ATP合成酶时通过膜向后移动,就像之前一样。然后电子流经光系统I,可以用来减少辅酶NADP< sup > + </sup ><ref>{{cite journal | vauthors = Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T | title = Cyclic electron flow around photosystem I is essential for photosynthesis | journal = Nature | volume = 429 | issue = 6991 | pages = 579–82 | date = June 2004 | pmid = 15175756 | doi = 10.1038/nature02598 | bibcode = 2004Natur.429..579M }}</ref>。这些辅酶可用于卡尔文循环(下文将对此进行讨论),或被循环用于进一步生成ATP。
    
==合成代谢==
 
==合成代谢==
第185行: 第186行:  
更多信息:脂肪酸合成和类固醇代谢
 
更多信息:脂肪酸合成和类固醇代谢
   −
[[File:Sterol synthesis.svg|thumb|right|upright=1.6|具有中间体[[异戊烯基焦磷酸酯]](IPP),[[二甲基烯丙基焦磷酸酯]](DMAPP),[[香叶基焦磷酸酯]](GPP)和[[角鲨烯的类固醇]]合成途径的简化版本。为了清晰起见,省略了一些中间步骤。]]
+
[[File:Sterol synthesis.svg|thumb|right|upright=1.6|具有中间体异戊烯基焦磷酸酯(IPP),二甲基烯丙基焦磷酸酯(DMAPP),香叶基焦磷酸酯(GPP)和角鲨烯的类固醇合成途径的简化版本。为了清晰起见,省略了一些中间步骤。]]
    
脂肪酸是由脂肪酸合成酶聚合并还原乙酰辅酶A单元制成的。脂肪酸中的酰基链通过一些反应的循环得以延伸,这些反应包括:添加酰基,将其还原为醇,脱水成烯烃基团,然后再还原为烷烃基团。脂肪酸生物合成的酶可以分为两类:在动物和真菌中,所有脂肪酸合成酶的反应都是由单一的多功能I型蛋白来完成的<ref>{{cite journal | vauthors = Chirala SS, Wakil SJ | title = Structure and function of animal fatty acid synthase | journal = Lipids | volume = 39 | issue = 11 | pages = 1045–53 | date = November 2004 | pmid = 15726818 | doi = 10.1007/s11745-004-1329-9 }}</ref>,而在植物的质体和细菌中,则由单独的II型酶来完成每一步<ref>{{cite journal | vauthors = White SW, Zheng J, Zhang YM | title = The structural biology of type II fatty acid biosynthesis | journal = Annual Review of Biochemistry | volume = 74 | issue =  | pages = 791–831 | year = 2005 | pmid = 15952903 | doi = 10.1146/annurev.biochem.74.082803.133524 }}</ref><ref>{{cite journal | vauthors = Ohlrogge JB, Jaworski JG | title = Regulation of Fatty Acid Synthesis | journal = Annual Review of Plant Physiology and Plant Molecular Biology | volume = 48 | issue =  | pages = 109–136 | date = June 1997 | pmid = 15012259 | doi = 10.1146/annurev.arplant.48.1.109 }}</ref>。
 
脂肪酸是由脂肪酸合成酶聚合并还原乙酰辅酶A单元制成的。脂肪酸中的酰基链通过一些反应的循环得以延伸,这些反应包括:添加酰基,将其还原为醇,脱水成烯烃基团,然后再还原为烷烃基团。脂肪酸生物合成的酶可以分为两类:在动物和真菌中,所有脂肪酸合成酶的反应都是由单一的多功能I型蛋白来完成的<ref>{{cite journal | vauthors = Chirala SS, Wakil SJ | title = Structure and function of animal fatty acid synthase | journal = Lipids | volume = 39 | issue = 11 | pages = 1045–53 | date = November 2004 | pmid = 15726818 | doi = 10.1007/s11745-004-1329-9 }}</ref>,而在植物的质体和细菌中,则由单独的II型酶来完成每一步<ref>{{cite journal | vauthors = White SW, Zheng J, Zhang YM | title = The structural biology of type II fatty acid biosynthesis | journal = Annual Review of Biochemistry | volume = 74 | issue =  | pages = 791–831 | year = 2005 | pmid = 15952903 | doi = 10.1146/annurev.biochem.74.082803.133524 }}</ref><ref>{{cite journal | vauthors = Ohlrogge JB, Jaworski JG | title = Regulation of Fatty Acid Synthesis | journal = Annual Review of Plant Physiology and Plant Molecular Biology | volume = 48 | issue =  | pages = 109–136 | date = June 1997 | pmid = 15012259 | doi = 10.1146/annurev.arplant.48.1.109 }}</ref>。
第221行: 第222行:  
由于大多数生物体的环境是不断变化的,因此它们必须对新陈代谢的反应进行精细的调节,以维持细胞内一系列恒定的条件,这种条件称为稳态<ref>{{cite journal | vauthors = Albert R | title = Scale-free networks in cell biology | journal = Journal of Cell Science | volume = 118 | issue = Pt 21 | pages = 4947–57 | date = November 2005 | pmid = 16254242 | doi = 10.1242/jcs.02714 | arxiv = q-bio/0510054  | bibcode = 2005q.bio....10054A }}</ref><ref>{{cite journal | vauthors = Brand MD | title = Regulation analysis of energy metabolism | journal = The Journal of Experimental Biology | volume = 200 | issue = Pt 2 | pages = 193–202 | date = January 1997 | pmid = 9050227 | url = http://jeb.biologists.org/cgi/reprint/200/2/193 }}</ref>。代谢调节也使生物体能够对信号作出反应,并与环境积极互动。有两个密切相关的概念对于理解“代谢途径是如何被控制的”十分重要<ref>{{cite journal | vauthors = Soyer OS, Salathé M, Bonhoeffer S | title = Signal transduction networks: topology, response and biochemical processes | journal = Journal of Theoretical Biology | volume = 238 | issue = 2 | pages = 416–25 | date = January 2006 | pmid = 16045939 | doi = 10.1016/j.jtbi.2005.05.030 }}</ref>。首先,途径中酶的调节是指其活性如何响应信号从而增加和减少。其次,这种酶所施加的控制是指它的活性变化对通路的总体速率(通过通路的通量)的影响<ref name="Salter">{{cite journal | vauthors = Salter M, Knowles RG, Pogson CI | title = Metabolic control | journal = Essays in Biochemistry | volume = 28 | issue =  | pages = 1–12 | year = 1994 | pmid = 7925313 }}</ref>。例如,一种酶可能表现出很大的活性变化(即它是高度受控的),但如果这些变化对某一代谢途径的通量影响不大,那么这种酶就不参与该途径的控制<ref>{{cite journal | vauthors = Westerhoff HV, Groen AK, Wanders RJ | title = Modern theories of metabolic control and their applications (review) | journal = Bioscience Reports | volume = 4 | issue = 1 | pages = 1–22 | date = January 1984 | pmid = 6365197 | doi = 10.1007/BF01120819 }}</ref>。
 
由于大多数生物体的环境是不断变化的,因此它们必须对新陈代谢的反应进行精细的调节,以维持细胞内一系列恒定的条件,这种条件称为稳态<ref>{{cite journal | vauthors = Albert R | title = Scale-free networks in cell biology | journal = Journal of Cell Science | volume = 118 | issue = Pt 21 | pages = 4947–57 | date = November 2005 | pmid = 16254242 | doi = 10.1242/jcs.02714 | arxiv = q-bio/0510054  | bibcode = 2005q.bio....10054A }}</ref><ref>{{cite journal | vauthors = Brand MD | title = Regulation analysis of energy metabolism | journal = The Journal of Experimental Biology | volume = 200 | issue = Pt 2 | pages = 193–202 | date = January 1997 | pmid = 9050227 | url = http://jeb.biologists.org/cgi/reprint/200/2/193 }}</ref>。代谢调节也使生物体能够对信号作出反应,并与环境积极互动。有两个密切相关的概念对于理解“代谢途径是如何被控制的”十分重要<ref>{{cite journal | vauthors = Soyer OS, Salathé M, Bonhoeffer S | title = Signal transduction networks: topology, response and biochemical processes | journal = Journal of Theoretical Biology | volume = 238 | issue = 2 | pages = 416–25 | date = January 2006 | pmid = 16045939 | doi = 10.1016/j.jtbi.2005.05.030 }}</ref>。首先,途径中酶的调节是指其活性如何响应信号从而增加和减少。其次,这种酶所施加的控制是指它的活性变化对通路的总体速率(通过通路的通量)的影响<ref name="Salter">{{cite journal | vauthors = Salter M, Knowles RG, Pogson CI | title = Metabolic control | journal = Essays in Biochemistry | volume = 28 | issue =  | pages = 1–12 | year = 1994 | pmid = 7925313 }}</ref>。例如,一种酶可能表现出很大的活性变化(即它是高度受控的),但如果这些变化对某一代谢途径的通量影响不大,那么这种酶就不参与该途径的控制<ref>{{cite journal | vauthors = Westerhoff HV, Groen AK, Wanders RJ | title = Modern theories of metabolic control and their applications (review) | journal = Bioscience Reports | volume = 4 | issue = 1 | pages = 1–22 | date = January 1984 | pmid = 6365197 | doi = 10.1007/BF01120819 }}</ref>。
   −
[[File:Insulin glucose metabolism ZP.svg|thumb|right|upright=1.35|胰岛素对葡萄糖摄取和代谢的影响。胰岛素与其受体(1)结合,继而启动许多蛋白质激活级联反应(2)。其中包括:Glut-4转运蛋白向[[质膜]]的转运和葡萄糖的流入(3),[[糖原]]合成(4),[[糖酵解]](5)和[[脂肪酸]]合成(6)。]]
+
[[File:Insulin glucose metabolism ZP.svg|thumb|right|upright=1.35|胰岛素对葡萄糖摄取和代谢的影响。胰岛素与其受体(1)结合,继而启动许多蛋白质激活级联反应(2)。其中包括:Glut-4转运蛋白向质膜的转运和葡萄糖的流入(3),糖原合成(4),糖酵解(5)和脂肪酸合成(6)。]]
    
新陈代谢调节有多个层次。在内在调节中,代谢途径自我调节,以应对底物或产物数量的变化;例如,产物数量的减少可以增加通过该途径的通量以进行补偿<ref name="Salter" />。外在控制是指多细胞生物体中的一个细胞根据来自其他细胞的信号改变其代谢<ref>{{cite journal | vauthors = Fell DA, Thomas S | title = Physiological control of metabolic flux: the requirement for multisite modulation | journal = The Biochemical Journal | volume = 311 ( Pt 1) | issue = Pt 1 | pages = 35–9 | date = October 1995 | pmid = 7575476 | pmc = 1136115 | doi = 10.1042/bj3110035 }}</ref>。这些信号通常以水溶性信使的形式出现(如激素和生长因子)<ref>{{cite journal | vauthors = Hendrickson WA | title = Transduction of biochemical signals across cell membranes | journal = Quarterly Reviews of Biophysics | volume = 38 | issue = 4 | pages = 321–30 | date = November 2005 | pmid = 16600054 | doi = 10.1017/S0033583506004136 }}</ref>,并被细胞表面的特定受体检测到。然后,这些信号通过第二信使系统在细胞内传递,该系统通常涉及蛋白质的磷酸化<ref>{{cite journal | vauthors = Cohen P | title = The regulation of protein function by multisite phosphorylation--a 25 year update | journal = Trends in Biochemical Sciences | volume = 25 | issue = 12 | pages = 596–601 | date = December 2000 | pmid = 11116185 | doi = 10.1016/S0968-0004(00)01712-6 }}</ref>。
 
新陈代谢调节有多个层次。在内在调节中,代谢途径自我调节,以应对底物或产物数量的变化;例如,产物数量的减少可以增加通过该途径的通量以进行补偿<ref name="Salter" />。外在控制是指多细胞生物体中的一个细胞根据来自其他细胞的信号改变其代谢<ref>{{cite journal | vauthors = Fell DA, Thomas S | title = Physiological control of metabolic flux: the requirement for multisite modulation | journal = The Biochemical Journal | volume = 311 ( Pt 1) | issue = Pt 1 | pages = 35–9 | date = October 1995 | pmid = 7575476 | pmc = 1136115 | doi = 10.1042/bj3110035 }}</ref>。这些信号通常以水溶性信使的形式出现(如激素和生长因子)<ref>{{cite journal | vauthors = Hendrickson WA | title = Transduction of biochemical signals across cell membranes | journal = Quarterly Reviews of Biophysics | volume = 38 | issue = 4 | pages = 321–30 | date = November 2005 | pmid = 16600054 | doi = 10.1017/S0033583506004136 }}</ref>,并被细胞表面的特定受体检测到。然后,这些信号通过第二信使系统在细胞内传递,该系统通常涉及蛋白质的磷酸化<ref>{{cite journal | vauthors = Cohen P | title = The regulation of protein function by multisite phosphorylation--a 25 year update | journal = Trends in Biochemical Sciences | volume = 25 | issue = 12 | pages = 596–601 | date = December 2000 | pmid = 11116185 | doi = 10.1016/S0968-0004(00)01712-6 }}</ref>。
第232行: 第233行:  
更多信息:分子进化与系统发育
 
更多信息:分子进化与系统发育
   −
[[File:Tree of life int.svg|thumb|right|upright=1.8|演化树显示了来自全部三个生命领域的生物体的共同祖先。[[细菌]]呈蓝色,[[真核生物]]呈红色,[[古菌]]呈绿色。树木周围显示了一些门的相对位置。
+
[[File:Tree of life int.svg|thumb|right|upright=1.8|演化树显示了来自全部三个生命领域的生物体的共同祖先。细菌呈蓝色,真核生物呈红色,古菌呈绿色。树木周围显示了一些门的相对位置。
    
]]
 
]]
第245行: 第246行:  
更多信息:蛋白质方法,蛋白质组学,代谢组学和代谢网络建模
 
更多信息:蛋白质方法,蛋白质组学,代谢组学和代谢网络建模
   −
[[File:A thaliana metabolic network.png|thumb|upright=1.35|right|[[拟南芥]][[三羧酸循环]]的[[代谢网络]]。[[酶]]和[[代谢物]]显示为红色方块,它们之间的相互作用显示为黑线。]]
+
[[File:A thaliana metabolic network.png|thumb|upright=1.35|right|拟南芥三羧酸循环的代谢网络。酶和代谢物显示为红色方块,它们之间的相互作用显示为黑线。]]
    
传统上,新陈代谢的研究采用还原法,侧重于单一的新陈代谢途径。特别有价值的是在整个有机体、组织和细胞水平上使用放射性示踪剂,通过追踪携带放射性标记的中间物和产品来获知从前体到最终产品的路径<ref>{{cite journal | vauthors = Rennie MJ | title = An introduction to the use of tracers in nutrition and metabolism | journal = The Proceedings of the Nutrition Society | volume = 58 | issue = 4 | pages = 935–44 | date = November 1999 | pmid = 10817161 | doi = 10.1017/S002966519900124X | doi-access = free }}</ref>。然后可以纯化催化这些化学反应的酶,并研究其动力学和对抑制剂的反应。一个并行的方法是识别细胞或组织中的小分子;这些分子的完整集合被称为代谢组。总的来说,这些研究可以很好地了解简单代谢途径的结构和功能,但当应用于更复杂的系统(如一个完整细胞的代谢时),这些研究是不够的<ref>{{cite journal | vauthors = Phair RD | title = Development of kinetic models in the nonlinear world of molecular cell biology | journal = Metabolism | volume = 46 | issue = 12 | pages = 1489–95 | date = December 1997 | pmid = 9439549 | doi = 10.1016/S0026-0495(97)90154-2 }}</ref>。
 
传统上,新陈代谢的研究采用还原法,侧重于单一的新陈代谢途径。特别有价值的是在整个有机体、组织和细胞水平上使用放射性示踪剂,通过追踪携带放射性标记的中间物和产品来获知从前体到最终产品的路径<ref>{{cite journal | vauthors = Rennie MJ | title = An introduction to the use of tracers in nutrition and metabolism | journal = The Proceedings of the Nutrition Society | volume = 58 | issue = 4 | pages = 935–44 | date = November 1999 | pmid = 10817161 | doi = 10.1017/S002966519900124X | doi-access = free }}</ref>。然后可以纯化催化这些化学反应的酶,并研究其动力学和对抑制剂的反应。一个并行的方法是识别细胞或组织中的小分子;这些分子的完整集合被称为代谢组。总的来说,这些研究可以很好地了解简单代谢途径的结构和功能,但当应用于更复杂的系统(如一个完整细胞的代谢时),这些研究是不够的<ref>{{cite journal | vauthors = Phair RD | title = Development of kinetic models in the nonlinear world of molecular cell biology | journal = Metabolism | volume = 46 | issue = 12 | pages = 1489–95 | date = December 1997 | pmid = 9439549 | doi = 10.1016/S0026-0495(97)90154-2 }}</ref>。
1,068

个编辑

导航菜单