更改

跳到导航 跳到搜索
删除61字节 、 2021年8月7日 (六) 22:16
第217行: 第217行:       −
对于大多数真实世界的问题,简单的穷举搜索<ref name="Uninformed search"/>很难满足要求: 搜索空间(要搜索的位置数)很快就会增加到天文数字。结果就是搜索速度太慢或者永远不能完成。对于许多问题,解决方法是使用“'''启发式 Heuristics''' ”或“'''经验法则 Rules of Thumb''' ” ,优先考虑那些更有可能达到目标的选择,并且在较短的步骤内完成。在一些搜索方法中,启发式方法还可以完全移去一些不可能通向目标的选择(称为“修剪搜索树”)。<ref name="Informed search"/>启发式为程序提供了解决方案所在路径的“最佳猜测”。<ref name="Russell & Norvig 2003"/><ref name="Poole, Mackworth & Goebel 1998"/><ref name="Luger & Stubblefield 2004"/><ref name="Nilsson 1998"/>启发式把搜索限制在了更小的样本规模里。<ref name ="Tecuci 2012>Tecuci, Gheorghe (March–April 2012). "Artificial Intelligence". Wiley Interdisciplinary Reviews: Computational Statistics. 4 (2): 168–180. doi:10.1002/wics.200</ref>
+
对于大多数真实世界的问题,简单的穷举搜索很难满足要求: 搜索空间(要搜索的位置数)很快就会增加到天文数字。结果就是搜索速度太慢或者永远不能完成。对于许多问题,解决方法是使用“'''启发式 Heuristics''' ”或“'''经验法则 Rules of Thumb''' ” ,优先考虑那些更有可能达到目标的选择,并且在较短的步骤内完成。在一些搜索方法中,启发式方法还可以完全移去一些不可能通向目标的选择(称为“修剪搜索树”)。启发式为程序提供了解决方案所在路径的“最佳猜测”。<ref name="Russell & Norvig 2003"/><ref name="Poole, Mackworth & Goebel 1998"/><ref name="Luger & Stubblefield 2004"/><ref name="Nilsson 1998"/>启发式把搜索限制在了更小的样本规模里。<ref name ="Tecuci 2012>Tecuci, Gheorghe (March–April 2012). "Artificial Intelligence". Wiley Interdisciplinary Reviews: Computational Statistics. 4 (2): 168–180. doi:10.1002/wics.200</ref>
      第226行: 第226行:     
[[演化计算]]用到了优化搜索的形式。例如,他们可能从一群有机体(猜测)开始,然后让它们变异和重组,选择适者继续生存 (改进猜测)。经典的演化算法包括遗传算法、基因表达编程和遗传编程。<ref name="Luger & Stubblefield 2004"/><ref name="Nilsson 1998"/><ref name="Holland, John H. (1975)">Holland, John H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press. ISBN 978-0-262-58111-0.</ref><ref name="Koza, John R. (1992)">Koza, John R. (1992). Genetic Programming (On the Programming of Computers by Means of Natural Selection). MIT Press. Bibcode:1992gppc.book.....K. ISBN 978-0-262-11170-6.</ref><ref name="Poli(2008)">Poli, R.; Langdon, W. B.; McPhee, N. F. (2008). A Field Guide to Genetic Programming. Lulu.com. ISBN 978-1-4092-0073-4 – via gp-field-guide.org.uk.</ref>或者,分布式搜索过程可以通过群智能算法进行协调。搜索中使用的两种流行的群算法是粒子群优化(禽流启发植绒和)蚁群优化(灵感来源于蚂蚁小径)。<ref name="Society based learning"/><ref>{{cite book|author1=Daniel Merkle|author2=Martin Middendorf|editor1-last=Burke|editor1-first=Edmund K.|editor2-last=Kendall|editor2-first=Graham|title=Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques|date=2013|publisher=Springer Science & Business Media|isbn=978-1-4614-6940-7|language=en|chapter=Swarm Intelligence}}</ref>
 
[[演化计算]]用到了优化搜索的形式。例如,他们可能从一群有机体(猜测)开始,然后让它们变异和重组,选择适者继续生存 (改进猜测)。经典的演化算法包括遗传算法、基因表达编程和遗传编程。<ref name="Luger & Stubblefield 2004"/><ref name="Nilsson 1998"/><ref name="Holland, John H. (1975)">Holland, John H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press. ISBN 978-0-262-58111-0.</ref><ref name="Koza, John R. (1992)">Koza, John R. (1992). Genetic Programming (On the Programming of Computers by Means of Natural Selection). MIT Press. Bibcode:1992gppc.book.....K. ISBN 978-0-262-11170-6.</ref><ref name="Poli(2008)">Poli, R.; Langdon, W. B.; McPhee, N. F. (2008). A Field Guide to Genetic Programming. Lulu.com. ISBN 978-1-4092-0073-4 – via gp-field-guide.org.uk.</ref>或者,分布式搜索过程可以通过群智能算法进行协调。搜索中使用的两种流行的群算法是粒子群优化(禽流启发植绒和)蚁群优化(灵感来源于蚂蚁小径)。<ref name="Society based learning"/><ref>{{cite book|author1=Daniel Merkle|author2=Martin Middendorf|editor1-last=Burke|editor1-first=Edmund K.|editor2-last=Kendall|editor2-first=Graham|title=Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques|date=2013|publisher=Springer Science & Business Media|isbn=978-1-4614-6940-7|language=en|chapter=Swarm Intelligence}}</ref>
      
===逻辑===
 
===逻辑===
7,129

个编辑

导航菜单