更改

跳到导航 跳到搜索
删除260字节 、 2021年8月7日 (六) 23:39
无编辑摘要
第284行: 第284行:  
====深层前馈神经网络====
 
====深层前馈神经网络====
   −
深度学习是任何可以学习长因果链的人工神经网络。例如,一个具有六个隐藏层的前馈网络可以学习有七个链接的因果链(六个隐藏层 + 一个输出层) ,并且具深度为7的“'''信用分配路径 Credit Assignment Path(CAP)''' ”。许多深度学习系统需要学习长度在十及以上的因果链。<ref name="goodfellow2016">Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press. [http://www.deeplearningbook.org Online] {{webarchive|url=https://web.archive.org/web/20160416111010/http://www.deeplearningbook.org/ |date=16 April 2016 }}</ref><ref name="HintonDengYu2012">{{cite journal | last1 = Hinton | first1 = G. | last2 = Deng | first2 = L. | last3 = Yu | first3 = D. | last4 = Dahl | first4 = G. | last5 = Mohamed | first5 = A. | last6 = Jaitly | first6 = N. | last7 = Senior | first7 = A. | last8 = Vanhoucke | first8 = V. | last9 = Nguyen | first9 = P. | last10 = Sainath | first10 = T. | last11 = Kingsbury | first11 = B. | year = 2012 | title = Deep Neural Networks for Acoustic Modeling in Speech Recognition – The shared views of four research groups | url = | journal = IEEE Signal Processing Magazine | volume = 29 | issue = 6| pages = 82–97 | doi=10.1109/msp.2012.2205597}}</ref><ref name="schmidhuber2015">{{cite journal |last=Schmidhuber |first=J. |year=2015 |title=Deep Learning in Neural Networks: An Overview |journal=Neural Networks |volume=61 |pages=85–117 |arxiv=1404.7828 |doi=10.1016/j.neunet.2014.09.003|pmid=25462637 }}</ref>
+
深度学习是任何可以学习长因果链的人工神经网络。例如,一个具有六个隐藏层的前馈网络可以学习有七个链接的因果链(六个隐藏层 + 一个输出层) ,并且具深度为7的“'''信用分配路径 Credit Assignment Path(CAP)''' ”。许多深度学习系统需要学习长度在十及以上的因果链。<ref name="goodfellow2016">Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press. [http://www.deeplearningbook.org Online] </ref><ref name="HintonDengYu2012">{{cite journal | last1 = Hinton | first1 = G. | last2 = Deng | first2 = L. | last3 = Yu | first3 = D. | last4 = Dahl | first4 = G. | last5 = Mohamed | first5 = A. | last6 = Jaitly | first6 = N. | last7 = Senior | first7 = A. | last8 = Vanhoucke | first8 = V. | last9 = Nguyen | first9 = P. | last10 = Sainath | first10 = T. | last11 = Kingsbury | first11 = B. | year = 2012 | title = Deep Neural Networks for Acoustic Modeling in Speech Recognition – The shared views of four research groups | url = | journal = IEEE Signal Processing Magazine | volume = 29 | issue = 6| pages = 82–97 | doi=10.1109/msp.2012.2205597}}</ref><ref name="schmidhuber2015">{{cite journal |last=Schmidhuber |first=J. |year=2015 |title=Deep Learning in Neural Networks: An Overview |journal=Neural Networks |volume=61 |pages=85–117 |arxiv=1404.7828 |doi=10.1016/j.neunet.2014.09.003|pmid=25462637 }}</ref>
      第378行: 第378行:       −
如今,银行使用AI系统来组织业务、记账、投资股票和管理房地产。AI可以对突然的变化和没有业务的情况做出反应<ref name="Eleanor">{{cite web|url=https://www.icas.com/ca-today-news/how-accountancy-and-finance-are-using-artificial-intelligence|title=Accounting, automation and AI|first=Eleanor|last=O'Neill|website=icas.com|language=English|date=31 July 2016|access-date=18 November 2016|url-status=live|archiveurl=https://web.archive.org/web/20161118165901/https://www.icas.com/ca-today-news/how-accountancy-and-finance-are-using-artificial-intelligence|archivedate=18 November 2016|df=dmy-all}}</ref>。2001年8月,机器人在一场模拟金融交易竞赛中击败了人类<ref>[http://news.bbc.co.uk/2/hi/business/1481339.stm Robots Beat Humans in Trading Battle.] {{webarchive|url=https://web.archive.org/web/20090909001249/http://news.bbc.co.uk/2/hi/business/1481339.stm |date=9 September 2009 }} BBC.com (8 August 2001)</ref>。AI还通过监测用户的行为模式发现异常变化或异常现象,减少了欺诈和金融犯罪<ref name="fsroundtable.org">{{Cite news|url=http://fsroundtable.org/cto-corner-artificial-intelligence-use-in-financial-services/|title=CTO Corner: Artificial Intelligence Use in Financial Services – Financial Services Roundtable|date=2 April 2015|work=Financial Services Roundtable|language=en-US|access-date=18 November 2016|url-status=dead|archiveurl=https://web.archive.org/web/20161118165842/http://fsroundtable.org/cto-corner-artificial-intelligence-use-in-financial-services/|archivedate=18 November 2016|df=dmy-all}}</ref><ref>{{Cite web|url=https://www.sas.com/en_ae/solutions/ai.html|title=Artificial Intelligence Solutions, AI Solutions|website=www.sas.com}}</ref><ref>{{Cite web|url=https://www.latimes.com/business/la-fi-palantir-sales-ipo-20190107-story.html|title=Palantir once mocked the idea of salespeople. Now it's hiring them|last=Chapman|first=Lizette|website=latimes.com|access-date=2019-02-28|date=7 January 2019}}</ref>。
+
如今,银行使用AI系统来组织业务、记账、投资股票和管理房地产。AI可以对突然的变化和没有业务的情况做出反应<ref name="Eleanor">{{cite web|url=https://www.icas.com/ca-today-news/how-accountancy-and-finance-are-using-artificial-intelligence|title=Accounting, automation and AI|first=Eleanor|last=O'Neill|website=icas.com|language=English|date=31 July 2016|access-date=18 November 2016|url-status=live|archiveurl=https://web.archive.org/web/20161118165901/https://www.icas.com/ca-today-news/how-accountancy-and-finance-are-using-artificial-intelligence|archivedate=18 November 2016|df=dmy-all}}</ref>。2001年8月,机器人在一场模拟金融交易竞赛中击败了人类<ref>[http://news.bbc.co.uk/2/hi/business/1481339.stm Robots Beat Humans in Trading Battle.] BBC.com (8 August 2001)</ref>。AI还通过监测用户的行为模式发现异常变化或异常现象,减少了欺诈和金融犯罪<ref name="fsroundtable.org">{{Cite news|url=http://fsroundtable.org/cto-corner-artificial-intelligence-use-in-financial-services/|title=CTO Corner: Artificial Intelligence Use in Financial Services – Financial Services Roundtable|date=2 April 2015|work=Financial Services Roundtable|language=en-US|access-date=18 November 2016|url-status=dead|archiveurl=https://web.archive.org/web/20161118165842/http://fsroundtable.org/cto-corner-artificial-intelligence-use-in-financial-services/|archivedate=18 November 2016|df=dmy-all}}</ref><ref>{{Cite web|url=https://www.sas.com/en_ae/solutions/ai.html|title=Artificial Intelligence Solutions, AI Solutions|website=www.sas.com}}</ref><ref>{{Cite web|url=https://www.latimes.com/business/la-fi-palantir-sales-ipo-20190107-story.html|title=Palantir once mocked the idea of salespeople. Now it's hiring them|last=Chapman|first=Lizette|website=latimes.com|access-date=2019-02-28|date=7 January 2019}}</ref>。
      第405行: 第405行:       −
电子资料档案查询(eDiscovery)产业一直很关注机器学习(预测编码 / 技术辅助评审) ,这是AI的一个子领域。自然语言处理(NLP)和自动语音识别(ASR)也正在这个行业流行起来。
+
电子资料档案查询产业一直很关注机器学习(预测编码 / 技术辅助评审) ,这是AI的一个子领域。自然语言处理(NLP)和自动语音识别(ASR)也正在这个行业流行起来。
     
7,129

个编辑

导航菜单