可以从<font color="#ff8000">切尔诺夫界 Chernoff bound</font>中得到一个更清晰的边界。<ref name="ag">{{cite journal |first1=R. |last1=Arratia |first2=L. |last2=Gordon |title=Tutorial on large deviations for the binomial distribution |journal=Bulletin of Mathematical Biology |volume=51 |issue=1 |year=1989 |pages=125–131 |doi=10.1007/BF02458840 |pmid=2706397 |s2cid=189884382 }}</ref>
+
可以从<font color="#ff8000">切尔诺夫界 Chernoff bound</font>中得到一个更清晰的边界。<ref>{{cite journal |first1=R. |last1=Arratia |first2=L. |last2=Gordon |title=Tutorial on large deviations for the binomial distribution |journal=Bulletin of Mathematical Biology |volume=51 |issue=1 |year=1989 |pages=125–131 |doi=10.1007/BF02458840 |pmid=2706397 |s2cid=189884382 }}</ref>
第412行:
第412行:
−
渐近地,这个边界是相当严格的;详见<ref name="ag">{{cite journal |first1=R. |last1=Arratia |first2=L. |last2=Gordon |title=Tutorial on large deviations for the binomial distribution |journal=Bulletin of Mathematical Biology |volume=51 |issue=1 |year=1989 |pages=125–131 |doi=10.1007/BF02458840 |pmid=2706397 |s2cid=189884382 }}</ref>。
+
渐近地,这个边界是相当严格的;详见<ref>{{cite journal |first1=R. |last1=Arratia |first2=L. |last2=Gordon |title=Tutorial on large deviations for the binomial distribution |journal=Bulletin of Mathematical Biology |volume=51 |issue=1 |year=1989 |pages=125–131 |doi=10.1007/BF02458840 |pmid=2706397 |s2cid=189884382 }}</ref>。
第436行:
第436行:
<math>\widehat{p\,} \pm z \sqrt{ \frac{ \widehat{p\,} ( 1 -\widehat{p\,} )}{ n } }</math>
<math>\widehat{p\,} \pm z \sqrt{ \frac{ \widehat{p\,} ( 1 -\widehat{p\,} )}{ n } }</math>