更改

跳到导航 跳到搜索
添加1,528字节 、 2021年8月8日 (日) 20:37
无编辑摘要
第3行: 第3行:  
|description=离散分布,阶乘和二项式主题,共轭先验分布,正态逼近,指数族分布
 
|description=离散分布,阶乘和二项式主题,共轭先验分布,正态逼近,指数族分布
 
}}
 
}}
 
+
{{Probability distribution
 +
  | name      = Binomial distribution
 +
  | type      = mass
 +
  | pdf_image  = [[File:Binomial distribution pmf.svg|300px|Probability mass function for the binomial distribution]]
 +
  | cdf_image  = [[File:Binomial distribution cdf.svg|300px|Cumulative distribution function for the binomial distribution]]
 +
  | notation  = <math>B(n,p)</math>
 +
  | parameters = <math>n \in \{0, 1, 2, \ldots\}</math> &ndash; number of trials<br /><math>p \in [0,1]</math> &ndash; success probability for each trial<br /><math>q = 1 - p</math>
 +
  | support    = <math>k \in \{0, 1, \ldots, n\}</math> &ndash; number of successes
 +
  | pdf        = <math>\binom{n}{k} p^k q^{n-k}</math>
 +
  | cdf        = <math>I_{q}(n - k, 1 + k)</math>
 +
  | mean      = <math>np</math>
 +
  | median    = <math>\lfloor np \rfloor</math> or <math>\lceil np \rceil</math>
 +
  | mode      = <math>\lfloor (n + 1)p \rfloor</math> or <math>\lceil (n + 1)p \rceil - 1</math>
 +
  | variance  = <math>npq</math>
 +
  | skewness  = <math>\frac{q-p}{\sqrt{npq}}</math>
 +
  | kurtosis  = <math>\frac{1-6pq}{npq}</math>
 +
  | entropy    = <math>\frac{1}{2} \log_2 (2\pi enpq) + O \left( \frac{1}{n} \right)</math><br /> in [[Shannon (unit)|shannons]]. For [[nat (unit)|nats]], use the natural log in the log.
 +
  | mgf        = <math>(q + pe^t)^n</math>
 +
  | char      = <math>(q + pe^{it})^n</math>
 +
  | pgf        = <math>G(z) = [q + pz]^n</math>
 +
  | fisher    = <math> g_n(p) = \frac{n}{pq} </math><br />(for fixed <math>n</math>)
 +
}}
 +
{{Probability fundamentals}}
 
{{short description|Probability distribution}}
 
{{short description|Probability distribution}}
  
7,129

个编辑

导航菜单