第357行: |
第357行: |
| ====阿格里斯蒂-库尔方法==== | | ====阿格里斯蒂-库尔方法==== |
| | | |
− | <math> \frac{z^2}{4 n^2}</math> | + | :<math>\frac{z^2}{4 n^2}</math><ref name="Agresti1988">{{Citation |last1=Agresti |first1=Alan |last2=Coull |first2=Brent A. |date=May 1998 |title=Approximate is better than 'exact' for interval estimation of binomial proportions |url = http://www.stat.ufl.edu/~aa/articles/agresti_coull_1998.pdf |journal=The American Statistician |volume=52 |issue=2 |pages=119–126 |accessdate=2015-01-05 |doi=10.2307/2685469 |jstor=2685469 }}</ref> |
− | | + | :<math> \tilde{p} \pm z \sqrt{ \frac{ \tilde{p} ( 1 - \tilde{p} )}{ n + z^2 } } .</math> |
− | <ref name="Agresti1988">{{Citation |last1=Agresti |first1=Alan |last2=Coull |first2=Brent A. |date=May 1998 |title=Approximate is better than 'exact' for interval estimation of binomial proportions |url = http://www.stat.ufl.edu/~aa/articles/agresti_coull_1998.pdf |journal=The American Statistician |volume=52 |issue=2 |pages=119–126 |accessdate=2015-01-05 |doi=10.2307/2685469 |jstor=2685469 }}</ref> | + | :<math>1 + \frac{z^2}{n}</math> |
− | | |
− | ::<math> \tilde{p} \pm z \sqrt{ \frac{ \tilde{p} ( 1 - \tilde{p} )}{ n + z^2 } } .</math>
| |
− | | |
− | <math>1 + \frac{z^2}{n}</math> | |
| | | |
| 这里''p''的估计量被修改为 | | 这里''p''的估计量被修改为 |
− | | + | :<math> \tilde{p}= \frac{ n_1 + \frac{1}{2} z^2}{ n + z^2 } </math> |
− | | |
− | ::<math> \tilde{p}= \frac{ n_1 + \frac{1}{2} z^2}{ n + z^2 } </math>
| |
| | | |
| 确切的(克洛佩尔-皮尔森)方法是最保守的。 | | 确切的(克洛佩尔-皮尔森)方法是最保守的。 |