第95行: |
第95行: |
| ===例子 === | | ===例子 === |
| 假设抛出一枚<font color="#ff8000">有偏硬币 biased coin </font>时,正面朝上的概率为0.3。在6次抛掷中恰好看到4个正面的概率是 | | 假设抛出一枚<font color="#ff8000">有偏硬币 biased coin </font>时,正面朝上的概率为0.3。在6次抛掷中恰好看到4个正面的概率是 |
− |
| |
| | | |
| <math>f(4,6,0.3) = \binom{6}{4}0.3^4 (1-0.3)^{6-4}= 0.059535.</math>. | | <math>f(4,6,0.3) = \binom{6}{4}0.3^4 (1-0.3)^{6-4}= 0.059535.</math>. |
| | | |
| '''累积分布函数''' | | '''累积分布函数''' |
− |
| |
| | | |
| 累积分布函数可以表达为: | | 累积分布函数可以表达为: |
− |
| |
| | | |
| <math>F(k;n,p) = \Pr(X \le k) = \sum_{i=0}^{\lfloor k \rfloor} {n\choose i}p^i(1-p)^{n-i},</math> , | | <math>F(k;n,p) = \Pr(X \le k) = \sum_{i=0}^{\lfloor k \rfloor} {n\choose i}p^i(1-p)^{n-i},</math> , |
− |
| |
| | | |
| <math>\lfloor k\rfloor</math>是k的<font color="#ff8000">向下取整 round down</font>,即小于或等于''k''的最大整数。 | | <math>\lfloor k\rfloor</math>是k的<font color="#ff8000">向下取整 round down</font>,即小于或等于''k''的最大整数。 |
| | | |
| 在<font color="#ff8000">正则化不完全的beta函数 regularized incomplete beta function </font>下,它也可以表示如下: <ref>{{cite book |last=Wadsworth |first=G. P. |title=Introduction to Probability and Random Variables |year=1960 |publisher=McGraw-Hill |location=New York |page=[https://archive.org/details/introductiontopr0000wads/page/52 52] |url=https://archive.org/details/introductiontopr0000wads |url-access=registration }}</ref> | | 在<font color="#ff8000">正则化不完全的beta函数 regularized incomplete beta function </font>下,它也可以表示如下: <ref>{{cite book |last=Wadsworth |first=G. P. |title=Introduction to Probability and Random Variables |year=1960 |publisher=McGraw-Hill |location=New York |page=[https://archive.org/details/introductiontopr0000wads/page/52 52] |url=https://archive.org/details/introductiontopr0000wads |url-access=registration }}</ref> |
− |
| |
| | | |
| <math>\begin{align} | | <math>\begin{align} |
第124行: |
第119行: |
| | | |
| 这相当于<font color="#ff8000">F分布 F-distribution</font>的累积分布函数: <ref>{{cite journal |last=Jowett |first=G. H. |year=1963 |title=The Relationship Between the Binomial and F Distributions |journal=Journal of the Royal Statistical Society D |volume=13 |issue=1 |pages=55–57 |doi=10.2307/2986663 |jstor=2986663 }}</ref> | | 这相当于<font color="#ff8000">F分布 F-distribution</font>的累积分布函数: <ref>{{cite journal |last=Jowett |first=G. H. |year=1963 |title=The Relationship Between the Binomial and F Distributions |journal=Journal of the Royal Statistical Society D |volume=13 |issue=1 |pages=55–57 |doi=10.2307/2986663 |jstor=2986663 }}</ref> |
− |
| |
| | | |
| <math>F(k;n,p) = F_{F\text{-distribution}}\left(x=\frac{1-p}{p}\frac{k+1}{n-k};d_1=2(n-k),d_2=2(k+1)\right).</math> | | <math>F(k;n,p) = F_{F\text{-distribution}}\left(x=\frac{1-p}{p}\frac{k+1}{n-k};d_1=2(n-k),d_2=2(k+1)\right).</math> |
− |
| |
| | | |
| 下面给出了累积分布函数的一些<font color="#ff8000">闭式界 closed-form bounds </font>。 | | 下面给出了累积分布函数的一些<font color="#ff8000">闭式界 closed-form bounds </font>。 |