更改

跳到导航 跳到搜索
删除153字节 、 2021年8月21日 (六) 00:23
第51行: 第51行:  
在开发蒙特卡罗方法之前,人们模拟测试一个已经解决的确定性问题,通过统计抽样估计模拟中的不确定性。蒙特卡罗模拟将这种方法反转,使用'''概率元启发式方法Probabilistic Metaheuristics'''解决确定性问题(参见'''模拟退火法 Simulated Annealing''')。
 
在开发蒙特卡罗方法之前,人们模拟测试一个已经解决的确定性问题,通过统计抽样估计模拟中的不确定性。蒙特卡罗模拟将这种方法反转,使用'''概率元启发式方法Probabilistic Metaheuristics'''解决确定性问题(参见'''模拟退火法 Simulated Annealing''')。
   −
蒙特卡罗方法的早期变种被设计来解决 '''布丰投针 Buffon's Needle Problem'''问题,在布丰投针问题中,π可以通过将针落在由平行等距条组成的地板上来估计。20世纪30年代,'''恩里科·费米 Enrico Fermi'''在研究中子扩散时首次尝试了蒙特卡罗方法,但他没有发表这项工作。<ref name=":10">Metropolis, N. (1987). "The beginning of the Monte Carlo method" (PDF). ''Los Alamos Science'' (1987 Special Issue dedicated to Stanislaw Ulam): 125–130.</ref>
+
蒙特卡罗方法的早期变种被设计来解决 '''布丰投针 Buffon's Needle Problem'''问题,在布丰投针问题中,π可以通过将针落在由平行等距条组成的地板上来估计。20世纪30年代,恩里科·费米 Enrico Fermi在研究中子扩散时首次尝试了蒙特卡罗方法,但他没有发表这项工作。<ref name=":10">Metropolis, N. (1987). "The beginning of the Monte Carlo method" (PDF). ''Los Alamos Science'' (1987 Special Issue dedicated to Stanislaw Ulam): 125–130.</ref>
   −
20世纪40年代末,'''斯坦尼斯拉夫·乌拉姆 Stanislaw Ulam'''在洛斯阿拉莫斯国家实验室研究核武器项目时,发明了现代版的马尔可夫链蒙特卡罗方法。在乌拉姆的突破之后,'''约翰·冯·诺伊曼 John von Neumann'''立即意识到了它的重要性。冯·诺伊曼为ENIAC(人类第一台电子数字积分计算机)编写了程序来进行蒙特卡罗计算。1946年,洛斯阿拉莫斯的核武器物理学家正在研究中子在可裂变材料中的扩散。<ref name=":10" />尽管拥有大部分必要的数据,例如中子在与原子核碰撞之前在物质中的平均运行距离,以及碰撞后中子可能释放出多少能量,但洛斯阿拉莫斯的物理学家们无法用传统的、确定性的数学方法解决这个问题。此时乌拉姆建议使用随机实验。他后来回忆当初灵感产生过程:
+
20世纪40年代末,斯坦尼斯拉夫·乌拉姆 Stanislaw Ulam在洛斯阿拉莫斯国家实验室研究核武器项目时,发明了现代版的马尔可夫链蒙特卡罗方法。在乌拉姆的突破之后,约翰·冯·诺伊曼 John von Neumann立即意识到了它的重要性。冯·诺伊曼为ENIAC(人类第一台电子数字积分计算机)编写了程序来进行蒙特卡罗计算。1946年,洛斯阿拉莫斯的核武器物理学家正在研究中子在可裂变材料中的扩散。<ref name=":10" />尽管拥有大部分必要的数据,例如中子在与原子核碰撞之前在物质中的平均运行距离,以及碰撞后中子可能释放出多少能量,但洛斯阿拉莫斯的物理学家们无法用传统的、确定性的数学方法解决这个问题。此时乌拉姆建议使用随机实验。他后来回忆当初灵感产生过程:
    
我最初构想和尝试蒙特卡洛法是在1946年,当时我正从疾病中康复,时常玩单人纸牌游戏。那时我会思考这样一个问题:一盘52张的加菲尔德纸牌成功出牌的几率有多大?在花了大量时间尝试通过纯粹的组合计算来估计它们之后,我想知道是否有一种比“抽象思维”更实际的方法,可能不是将它展开100次,然后简单地观察和计算成功的游戏数量。在快速计算机新时代开始时,这已经是可以想象的了,我立刻想到了中子扩散和其他数学物理的问题,以及更一般的情形—如何将由某些微分方程描述的过程转换成可解释为一系列随机操作的等价形式。后来(1946年),我向约翰·冯·诺伊曼描述了这个想法,然后我们开始计划实际的计算。<ref>Eckhardt, Roger (1987). "Stan Ulam, John von Neumann, and the Monte Carlo method" (PDF). ''Los Alamos Science'' (15): 131–137.</ref>
 
我最初构想和尝试蒙特卡洛法是在1946年,当时我正从疾病中康复,时常玩单人纸牌游戏。那时我会思考这样一个问题:一盘52张的加菲尔德纸牌成功出牌的几率有多大?在花了大量时间尝试通过纯粹的组合计算来估计它们之后,我想知道是否有一种比“抽象思维”更实际的方法,可能不是将它展开100次,然后简单地观察和计算成功的游戏数量。在快速计算机新时代开始时,这已经是可以想象的了,我立刻想到了中子扩散和其他数学物理的问题,以及更一般的情形—如何将由某些微分方程描述的过程转换成可解释为一系列随机操作的等价形式。后来(1946年),我向约翰·冯·诺伊曼描述了这个想法,然后我们开始计划实际的计算。<ref>Eckhardt, Roger (1987). "Stan Ulam, John von Neumann, and the Monte Carlo method" (PDF). ''Los Alamos Science'' (15): 131–137.</ref>
   −
冯·诺依曼和乌拉姆的工作是秘密进行的,需要一个代号。<ref>Mazhdrakov, Metodi; Benov, Dobriyan; Valkanov, Nikolai (2018). ''The Monte Carlo Method. Engineering Applications''. ACMO Academic Press. p. 250. ISBN <bdi>978-619-90684-3-4</bdi>.</ref> 冯·诺依曼和乌拉姆的一位同事,'''尼古拉斯·梅特罗波利斯 Nicholas Metropolis'''建议使用蒙特卡洛这个名字,这个名字指的是摩纳哥的蒙特卡洛赌场,乌拉姆的叔叔会和亲戚借钱然后去那里赌博。<ref name=":10" />使用“真正随机”的随机数列表是非常慢的,然而冯·诺依曼使用'''平方取中法 Middle-Square Method'''开发了一种计算伪随机数生成器的方法。虽然许多人一直批评这种方法较为粗糙原始,但是冯·诺依曼也意识到这一点:他证明这种方法比任何其他方法都快,并指出当它出错时,人们可以轻易发现,不像其他方法产生的错误可能会不易察觉。<ref>Peragine, Michael (2013). ''The Universal Mind: The Evolution of Machine Intelligence and Human Psychology''. Xiphias Press. Retrieved 2018-12-17.</ref>
+
冯·诺依曼和乌拉姆的工作是秘密进行的,需要一个代号。<ref>Mazhdrakov, Metodi; Benov, Dobriyan; Valkanov, Nikolai (2018). ''The Monte Carlo Method. Engineering Applications''. ACMO Academic Press. p. 250. ISBN <bdi>978-619-90684-3-4</bdi>.</ref> 冯·诺依曼和乌拉姆的一位同事,尼古拉斯·梅特罗波利斯 Nicholas Metropolis建议使用蒙特卡洛这个名字,这个名字指的是摩纳哥的蒙特卡洛赌场,乌拉姆的叔叔会和亲戚借钱然后去那里赌博。<ref name=":10" />使用“真正随机”的随机数列表是非常慢的,然而冯·诺依曼使用'''平方取中法 Middle-Square Method'''开发了一种计算伪随机数生成器的方法。虽然许多人一直批评这种方法较为粗糙原始,但是冯·诺依曼也意识到这一点:他证明这种方法比任何其他方法都快,并指出当它出错时,人们可以轻易发现,不像其他方法产生的错误可能会不易察觉。<ref>Peragine, Michael (2013). ''The Universal Mind: The Evolution of Machine Intelligence and Human Psychology''. Xiphias Press. Retrieved 2018-12-17.</ref>
    
尽管受到当时的计算工具严重限制,蒙特卡洛方法依然是'''曼哈顿计划 Manhattan Project'''所需模拟的核心关键。20世纪50年代,它们在洛斯阿拉莫斯用于与氢弹开发有关的早期工作,并在物理学、物理化学和运筹学领域得到普及。'''兰德公司 Rand Corporation'''和美国空军是当时负责资助和宣传蒙特卡罗方法信息的两个主要组织,从那时起他们开始在许多不同的领域广泛地应用这一方法。
 
尽管受到当时的计算工具严重限制,蒙特卡洛方法依然是'''曼哈顿计划 Manhattan Project'''所需模拟的核心关键。20世纪50年代,它们在洛斯阿拉莫斯用于与氢弹开发有关的早期工作,并在物理学、物理化学和运筹学领域得到普及。'''兰德公司 Rand Corporation'''和美国空军是当时负责资助和宣传蒙特卡罗方法信息的两个主要组织,从那时起他们开始在许多不同的领域广泛地应用这一方法。
   −
更复杂的平均场型粒子蒙特卡罗方法的理论产生于20世纪60年代中期,最初来自于'''小亨利·麦基恩 Henry P. McKean Jr.''' 研究流体力学中出现的一类非线性抛物型偏微分方程的马尔可夫解释。<ref name="mck67">{{cite journal |last = McKean |first = Henry, P. |title = Propagation of chaos for a class of non-linear parabolic equations |journal = Lecture Series in Differential Equations, Catholic Univ. |year = 1967 |volume = 7 |pages = 41–57 }}</ref><ref>{{cite journal |last1 = McKean |first1 = Henry, P. |title = A class of Markov processes associated with nonlinear parabolic equations |journal = Proc. Natl. Acad. Sci. USA |year = 1966 |volume = 56 |issue = 6 |pages = 1907–1911 |doi = 10.1073/pnas.56.6.1907 |pmid = 16591437 |pmc = 220210 |bibcode = 1966PNAS...56.1907M }}</ref> '''西奥多·爱德华·哈里斯 Theodore E. Harris'''和'''赫曼·卡恩 Herman Kahn'''在1951年发表了一篇开创性文章,使用平均场遗传型蒙特卡罗方法来估计粒子传输能量。<ref>{{cite journal |last1 = Herman |first1 = Kahn |last2 = Theodore |first2 = Harris E. |title = Estimation of particle transmission by random sampling |journal = Natl. Bur. Stand. Appl. Math. Ser. |year = 1951 |volume = 12 |pages = 27–30 |url = https://dornsifecms.usc.edu/assets/sites/520/docs/kahnharris.pdf }}</ref> 这一方法在演化计算中也被用作启发式自然搜索算法(又称元启发式)。这些平均场计算技术的起源可以追溯到1950年和1954年,当时'''阿兰·图灵 Alan Turing'''在基因类型突变-选择学习机器上的工作,<ref>{{cite journal |last = Turing |first = Alan M. |title = Computing machinery and intelligence|journal = Mind|volume = LIX |issue = 238 |pages = 433–460 |doi = 10.1093/mind/LIX.236.433 |year = 1950 }}</ref>以及来自新泽西州普林斯顿高等研究院的'''尼尔斯·阿尔·巴里里利 Nils Aall Barricelli'''的文章。<ref>{{cite journal |last = Barricelli |first = Nils Aall |year = 1954 |title = Esempi numerici di processi di evoluzione |journal = Methodos |pages = 45–68 }}</ref><ref>{{cite journal |last = Barricelli |first = Nils Aall |year = 1957 |title = Symbiogenetic evolution processes realized by artificial methods |journal = Methodos |pages = 143–182 }}</ref>
+
更复杂的平均场型粒子蒙特卡罗方法的理论产生于20世纪60年代中期,最初来自于小亨利·麦基恩 Henry P. McKean Jr.研究流体力学中出现的一类非线性抛物型偏微分方程的马尔可夫解释。<ref name="mck67">{{cite journal |last = McKean |first = Henry, P. |title = Propagation of chaos for a class of non-linear parabolic equations |journal = Lecture Series in Differential Equations, Catholic Univ. |year = 1967 |volume = 7 |pages = 41–57 }}</ref><ref>{{cite journal |last1 = McKean |first1 = Henry, P. |title = A class of Markov processes associated with nonlinear parabolic equations |journal = Proc. Natl. Acad. Sci. USA |year = 1966 |volume = 56 |issue = 6 |pages = 1907–1911 |doi = 10.1073/pnas.56.6.1907 |pmid = 16591437 |pmc = 220210 |bibcode = 1966PNAS...56.1907M }}</ref> 西奥多·爱德华·哈里斯 Theodore E. Harris和赫曼·卡恩 Herman Kahn在1951年发表了一篇开创性文章,使用平均场遗传型蒙特卡罗方法来估计粒子传输能量。<ref>{{cite journal |last1 = Herman |first1 = Kahn |last2 = Theodore |first2 = Harris E. |title = Estimation of particle transmission by random sampling |journal = Natl. Bur. Stand. Appl. Math. Ser. |year = 1951 |volume = 12 |pages = 27–30 |url = https://dornsifecms.usc.edu/assets/sites/520/docs/kahnharris.pdf }}</ref> 这一方法在演化计算中也被用作启发式自然搜索算法(又称元启发式)。这些平均场计算技术的起源可以追溯到1950年和1954年,当时阿兰·图灵 Alan Turing在基因类型突变-选择学习机器上的工作,<ref>{{cite journal |last = Turing |first = Alan M. |title = Computing machinery and intelligence|journal = Mind|volume = LIX |issue = 238 |pages = 433–460 |doi = 10.1093/mind/LIX.236.433 |year = 1950 }}</ref>以及来自新泽西州普林斯顿高等研究院的尼尔斯·阿尔·巴里里利 Nils Aall Barricelli的文章。<ref>{{cite journal |last = Barricelli |first = Nils Aall |year = 1954 |title = Esempi numerici di processi di evoluzione |journal = Methodos |pages = 45–68 }}</ref><ref>{{cite journal |last = Barricelli |first = Nils Aall |year = 1957 |title = Symbiogenetic evolution processes realized by artificial methods |journal = Methodos |pages = 143–182 }}</ref>
   −
量子蒙特卡罗方法,更具体地说,扩散蒙特卡罗方法也可以解释为'''费曼-卡茨路径积分 Feynman–Kac Path Integrals'''的平均场粒子蒙特卡罗近似。<ref name="dp04">{{cite book |last = Del Moral |first = Pierre|title = Feynman–Kac formulae. Genealogical and interacting particle approximations |year = 2004 |publisher = Springer |quote = Series: Probability and Applications |url = https://www.springer.com/mathematics/probability/book/978-0-387-20268-6 |page = 575 |isbn = 9780387202686|series = Probability and Its Applications}}</ref><ref name="dmm002">Del Moral, P.; Miclo, L. (2000). "Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to non-linear filtering". ''Séminaire de Probabilités, XXXIV''. Lecture Notes in Mathematics. '''1729'''. Berlin: Springer. pp. 1–145. doi:10.1007/BFb0103798. ISBN <bdi>978-3-540-67314-9</bdi><nowiki>. MR 1768060.}}</nowiki></ref><ref name="dmm00m">{{cite journal|last1 = Del Moral|first1 = Pierre|last2 = Miclo|first2 = Laurent|title = A Moran particle system approximation of Feynman–Kac formulae.|journal = Stochastic Processes and Their Applications |year = 2000|volume = 86|issue = 2|pages = 193–216|doi = 10.1016/S0304-4149(99)00094-0|doi-access = free}}</ref><ref name="dm-esaim03">{{cite journal|last1 = Del Moral|first1 = Pierre|title = Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups|journal = ESAIM Probability & Statistics|date = 2003|volume = 7|pages = 171–208|url = http://journals.cambridge.org/download.php?file=%2FPSS%2FPSS7%2FS1292810003000016a.pdf&code=a0dbaa7ffca871126dc05fe2f918880a|doi = 10.1051/ps:2003001|doi-access = free}}</ref><ref name="caffarel1">{{cite journal|last1 = Assaraf|first1 = Roland|last2 = Caffarel|first2 = Michel|last3 = Khelif|first3 = Anatole|title = Diffusion Monte Carlo Methods with a fixed number of walkers|journal = Phys. Rev. E|url = http://qmcchem.ups-tlse.fr/files/caffarel/31.pdf|date = 2000|volume = 61|issue = 4|pages = 4566–4575|doi = 10.1103/physreve.61.4566|pmid = 11088257|bibcode = 2000PhRvE..61.4566A|url-status = dead|archiveurl = https://web.archive.org/web/20141107015724/http://qmcchem.ups-tlse.fr/files/caffarel/31.pdf|archivedate = 2014-11-07 }}</ref><ref name="caffarel2">{{cite journal|last1 = Caffarel|first1 = Michel|last2 = Ceperley|first2 = David |last3 = Kalos|first3 = Malvin|title = Comment on Feynman–Kac Path-Integral Calculation of the Ground-State Energies of Atoms|journal = Phys. Rev. Lett.|date = 1993|volume = 71|issue = 13|doi = 10.1103/physrevlett.71.2159|bibcode = 1993PhRvL..71.2159C|pages=2159|pmid=10054598}}</ref><ref name="h84">{{cite journal |last = Hetherington|first = Jack, H.|title = Observations on the statistical iteration of matrices|journal = Phys. Rev. A |date = 1984|volume = 30|issue = 2713|doi = 10.1103/PhysRevA.30.2713|pages = 2713–2719|bibcode = 1984PhRvA..30.2713H}}</ref> 量子蒙特卡罗方法的起源通常归功于'''恩里科·费米 Enrico Fermi'''和'''罗伯特·里希特迈耶 Robert Richtmyer'''于1948年开发了中子链式反应的平均场粒子解释,<ref name=":11">{{cite journal|last1 = Fermi|first1 = Enrique|last2 = Richtmyer|first2 = Robert, D.|title = Note on census-taking in Monte Carlo calculations|journal = LAM|date = 1948|volume = 805|issue = A|url = http://scienze-como.uninsubria.it/bressanini/montecarlo-history/fermi-1948.pdf|quote = Declassified report Los Alamos Archive}}</ref>但是用于估计量子系统的基态能量(在简化矩阵模型中)的第一个类启发式和遗传型粒子算法(也称为重取样或重构蒙特卡洛方法)则是由杰克·H·海瑟林顿在1984年<ref name="h84" /> 提出。在分子化学中,使用遗传类启发式的粒子方法(又名删减和富集策略)可以追溯到1955年——'''马歇尔·罗森布鲁斯 Marshall Rosenbluth'''和'''阿里安娜·罗森布鲁斯Arianna Rosenbluth'''的开创性工作。<ref name=":0">Rosenbluth, Marshall, N.; Rosenbluth, Arianna, W. (1955). "Monte-Carlo calculations of the average extension of macromolecular chains". ''J. Chem. Phys''. '''23''' (2): 356–359. Bibcode:1955JChPh..23..356R. doi:10.1063/1.1741967. S2CID 89611599.</ref>
+
量子蒙特卡罗方法,更具体地说,扩散蒙特卡罗方法也可以解释为'''费曼-卡茨路径积分 Feynman–Kac Path Integrals'''的平均场粒子蒙特卡罗近似。<ref name="dp04">{{cite book |last = Del Moral |first = Pierre|title = Feynman–Kac formulae. Genealogical and interacting particle approximations |year = 2004 |publisher = Springer |quote = Series: Probability and Applications |url = https://www.springer.com/mathematics/probability/book/978-0-387-20268-6 |page = 575 |isbn = 9780387202686|series = Probability and Its Applications}}</ref><ref name="dmm002">Del Moral, P.; Miclo, L. (2000). "Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to non-linear filtering". ''Séminaire de Probabilités, XXXIV''. Lecture Notes in Mathematics. '''1729'''. Berlin: Springer. pp. 1–145. doi:10.1007/BFb0103798. ISBN <bdi>978-3-540-67314-9</bdi><nowiki>. MR 1768060.}}</nowiki></ref><ref name="dmm00m">{{cite journal|last1 = Del Moral|first1 = Pierre|last2 = Miclo|first2 = Laurent|title = A Moran particle system approximation of Feynman–Kac formulae.|journal = Stochastic Processes and Their Applications |year = 2000|volume = 86|issue = 2|pages = 193–216|doi = 10.1016/S0304-4149(99)00094-0|doi-access = free}}</ref><ref name="dm-esaim03">{{cite journal|last1 = Del Moral|first1 = Pierre|title = Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups|journal = ESAIM Probability & Statistics|date = 2003|volume = 7|pages = 171–208|url = http://journals.cambridge.org/download.php?file=%2FPSS%2FPSS7%2FS1292810003000016a.pdf&code=a0dbaa7ffca871126dc05fe2f918880a|doi = 10.1051/ps:2003001|doi-access = free}}</ref><ref name="caffarel1">{{cite journal|last1 = Assaraf|first1 = Roland|last2 = Caffarel|first2 = Michel|last3 = Khelif|first3 = Anatole|title = Diffusion Monte Carlo Methods with a fixed number of walkers|journal = Phys. Rev. E|url = http://qmcchem.ups-tlse.fr/files/caffarel/31.pdf|date = 2000|volume = 61|issue = 4|pages = 4566–4575|doi = 10.1103/physreve.61.4566|pmid = 11088257|bibcode = 2000PhRvE..61.4566A|url-status = dead|archiveurl = https://web.archive.org/web/20141107015724/http://qmcchem.ups-tlse.fr/files/caffarel/31.pdf|archivedate = 2014-11-07 }}</ref><ref name="caffarel2">{{cite journal|last1 = Caffarel|first1 = Michel|last2 = Ceperley|first2 = David |last3 = Kalos|first3 = Malvin|title = Comment on Feynman–Kac Path-Integral Calculation of the Ground-State Energies of Atoms|journal = Phys. Rev. Lett.|date = 1993|volume = 71|issue = 13|doi = 10.1103/physrevlett.71.2159|bibcode = 1993PhRvL..71.2159C|pages=2159|pmid=10054598}}</ref><ref name="h84">{{cite journal |last = Hetherington|first = Jack, H.|title = Observations on the statistical iteration of matrices|journal = Phys. Rev. A |date = 1984|volume = 30|issue = 2713|doi = 10.1103/PhysRevA.30.2713|pages = 2713–2719|bibcode = 1984PhRvA..30.2713H}}</ref> 量子蒙特卡罗方法的起源通常归功于恩里科·费米 Enrico Fermi和罗伯特·里希特迈耶 Robert Richtmyer于1948年开发了中子链式反应的平均场粒子解释,<ref name=":11">{{cite journal|last1 = Fermi|first1 = Enrique|last2 = Richtmyer|first2 = Robert, D.|title = Note on census-taking in Monte Carlo calculations|journal = LAM|date = 1948|volume = 805|issue = A|url = http://scienze-como.uninsubria.it/bressanini/montecarlo-history/fermi-1948.pdf|quote = Declassified report Los Alamos Archive}}</ref>但是用于估计量子系统的基态能量(在简化矩阵模型中)的第一个类启发式和遗传型粒子算法(也称为重取样或重构蒙特卡洛方法)则是由杰克·H·海瑟林顿在1984年<ref name="h84" /> 提出。在分子化学中,使用遗传类启发式的粒子方法(又名删减和富集策略)可以追溯到1955年——马歇尔·罗森布鲁斯 Marshall Rosenbluth和阿里安娜·罗森布鲁斯Arianna Rosenbluth的开创性工作。<ref name=":0">Rosenbluth, Marshall, N.; Rosenbluth, Arianna, W. (1955). "Monte-Carlo calculations of the average extension of macromolecular chains". ''J. Chem. Phys''. '''23''' (2): 356–359. Bibcode:1955JChPh..23..356R. doi:10.1063/1.1741967. S2CID 89611599.</ref>
    
在高级信号处理和'''贝叶斯推断 Bayesian Inference'''中使用'''序列蒙特卡罗方法 Sequential Monte Carlo'''是最近才出现的。1993年,高登等人在他们的开创性工作中发表了蒙特卡罗重采样算法在贝叶斯推论统计学中的首次应用。<ref name=":12">Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. (April 1993). "Novel approach to nonlinear/non-Gaussian Bayesian state estimation". ''IEE Proceedings F - Radar and Signal Processing''. '''140''' (2): 107–113. doi:10.1049/ip-f-2.1993.0015. ISSN 0956-375X. S2CID 12644877.</ref>作者将他们的算法命名为“自举过滤器”,并证明了与其他过滤方法相比,他们的自举过滤算法不需要任何关于系统状态空间或噪声的假设。此外北川源四郎也进行了“蒙特卡洛过滤器”相关的开创性研究。<ref name=":13">Kitagawa, G. (1996). "Monte carlo filter and smoother for non-Gaussian nonlinear state space models". ''Journal of Computational and Graphical Statistics''. '''5''' (1): 1–25. doi:10.2307/1390750. JSTOR 1390750.
 
在高级信号处理和'''贝叶斯推断 Bayesian Inference'''中使用'''序列蒙特卡罗方法 Sequential Monte Carlo'''是最近才出现的。1993年,高登等人在他们的开创性工作中发表了蒙特卡罗重采样算法在贝叶斯推论统计学中的首次应用。<ref name=":12">Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. (April 1993). "Novel approach to nonlinear/non-Gaussian Bayesian state estimation". ''IEE Proceedings F - Radar and Signal Processing''. '''140''' (2): 107–113. doi:10.1049/ip-f-2.1993.0015. ISSN 0956-375X. S2CID 12644877.</ref>作者将他们的算法命名为“自举过滤器”,并证明了与其他过滤方法相比,他们的自举过滤算法不需要任何关于系统状态空间或噪声的假设。此外北川源四郎也进行了“蒙特卡洛过滤器”相关的开创性研究。<ref name=":13">Kitagawa, G. (1996). "Monte carlo filter and smoother for non-Gaussian nonlinear state space models". ''Journal of Computational and Graphical Statistics''. '''5''' (1): 1–25. doi:10.2307/1390750. JSTOR 1390750.
</ref>在1990年代中期,'''皮埃尔·德尔·莫勒尔 Pierre Del Moral <ref name="dm9622">{{cite journal|last1 = Del Moral|first1 = Pierre|title = Non Linear Filtering: Interacting Particle Solution.|journal = Markov Processes and Related Fields|date = 1996|volume = 2|issue = 4|pages = 555–580|url = http://web.maths.unsw.edu.au/~peterdel-moral/mprfs.pdf}}</ref>'''和'''希米尔康·卡瓦略 Himilcon Carvalho'''以及皮埃尔·德尔·莫勒尔、'''安德烈·莫宁 André Monin'''和'''杰拉德·萨鲁特 Gérard Salut <ref name=":14">Carvalho, Himilcon; Del Moral, Pierre; Monin, André; Salut, Gérard (July 1997). "Optimal Non-linear Filtering in GPS/INS Integration" (PDF). ''IEEE Transactions on Aerospace and Electronic Systems''. '''33''' (3): 835. Bibcode:1997ITAES..33..835C. doi:10.1109/7.599254. S2CID 27966240.</ref> '''发表了关于粒子过滤器的文章。1989-1992年间,在LAAS-CNRS(系统分析和体系结构实验室),皮埃尔·德尔·莫勒尔、'''J·C·诺亚 J. C. Noyer'''、'''G·里加尔 G. Rigal''' 和'''杰拉德·萨鲁特'''开发了粒子滤波器用于信号处理。他们与STCAN(海军建造和武装服务技术部)、IT公司DIGILOG共同完成了一系列关于雷达/声纳和GPS信号处理问题的限制性和机密性研究报告。<ref name=":15">P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: An unified framework for particle solutions". LAAS-CNRS, Toulouse, Research Report no. 91137, DRET-DIGILOG- LAAS/CNRS contract, April (1991).</ref><ref name=":16">P. Del Moral, G. Rigal, and G. Salut. "Nonlinear and non Gaussian particle filters applied to inertial platform repositioning." LAAS-CNRS, Toulouse, Research Report no. 92207, STCAN/DIGILOG-LAAS/CNRS Convention STCAN no. A.91.77.013, (94p.) September (1991).</ref><ref name=":17">P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: Particle resolution in filtering and estimation: Experimental results". Convention DRET no. 89.34.553.00.470.75.01, Research report no.2 (54p.), January (1992).</ref><ref name=":18">P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: Particle resolution in filtering and estimation: Theoretical results". Convention DRET no. 89.34.553.00.470.75.01, Research report no.3 (123p.), October (1992).</ref><ref name=":19">P. Del Moral, J.-Ch. Noyer, G. Rigal, and G. Salut. "Particle filters in radar signal processing: detection, estimation and air targets recognition". LAAS-CNRS, Toulouse, Research report no. 92495, December (1992).</ref><ref name=":20">P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: Particle resolution in filtering and estimation". Studies on: Filtering, optimal control, and maximum likelihood estimation. Convention DRET no. 89.34.553.00.470.75.01. Research report no.4 (210p.), January (1993).</ref>这些序列蒙特卡罗方法可以解释为一个接受拒绝采样器配备了相互作用的回收机制。
+
</ref>在1990年代中期,皮埃尔·德尔·莫勒尔 Pierre Del Moral <ref name="dm9622">{{cite journal|last1 = Del Moral|first1 = Pierre|title = Non Linear Filtering: Interacting Particle Solution.|journal = Markov Processes and Related Fields|date = 1996|volume = 2|issue = 4|pages = 555–580|url = http://web.maths.unsw.edu.au/~peterdel-moral/mprfs.pdf}}</ref>和希米尔康·卡瓦略 Himilcon Carvalho以及皮埃尔·德尔·莫勒尔、安德烈·莫宁 André Monin和杰拉德·萨鲁特 Gérard Salut <ref name=":14">Carvalho, Himilcon; Del Moral, Pierre; Monin, André; Salut, Gérard (July 1997). "Optimal Non-linear Filtering in GPS/INS Integration" (PDF). ''IEEE Transactions on Aerospace and Electronic Systems''. '''33''' (3): 835. Bibcode:1997ITAES..33..835C. doi:10.1109/7.599254. S2CID 27966240.</ref>发表了关于粒子过滤器的文章。1989-1992年间,在LAAS-CNRS(系统分析和体系结构实验室),皮埃尔·德尔·莫勒尔、J·C·诺亚 J. C. Noyer、G·里加尔 G. Rigal和杰拉德·萨鲁特开发了粒子滤波器用于信号处理。他们与STCAN(海军建造和武装服务技术部)、IT公司DIGILOG共同完成了一系列关于雷达/声纳和GPS信号处理问题的限制性和机密性研究报告。<ref name=":15">P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: An unified framework for particle solutions". LAAS-CNRS, Toulouse, Research Report no. 91137, DRET-DIGILOG- LAAS/CNRS contract, April (1991).</ref><ref name=":16">P. Del Moral, G. Rigal, and G. Salut. "Nonlinear and non Gaussian particle filters applied to inertial platform repositioning." LAAS-CNRS, Toulouse, Research Report no. 92207, STCAN/DIGILOG-LAAS/CNRS Convention STCAN no. A.91.77.013, (94p.) September (1991).</ref><ref name=":17">P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: Particle resolution in filtering and estimation: Experimental results". Convention DRET no. 89.34.553.00.470.75.01, Research report no.2 (54p.), January (1992).</ref><ref name=":18">P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: Particle resolution in filtering and estimation: Theoretical results". Convention DRET no. 89.34.553.00.470.75.01, Research report no.3 (123p.), October (1992).</ref><ref name=":19">P. Del Moral, J.-Ch. Noyer, G. Rigal, and G. Salut. "Particle filters in radar signal processing: detection, estimation and air targets recognition". LAAS-CNRS, Toulouse, Research report no. 92495, December (1992).</ref><ref name=":20">P. Del Moral, G. Rigal, and G. Salut. "Estimation and nonlinear optimal control: Particle resolution in filtering and estimation". Studies on: Filtering, optimal control, and maximum likelihood estimation. Convention DRET no. 89.34.553.00.470.75.01. Research report no.4 (210p.), January (1993).</ref>这些序列蒙特卡罗方法可以解释为一个接受拒绝采样器配备了相互作用的回收机制。
    
从1950年到1996年,所有关于顺序蒙特卡罗方法的出版物,包括计算物理和分子化学中引入的删减和重采样蒙特卡罗方法,目前应用于不同的情况的自然和类启发式算法,没有任何一致性证明,也没有讨论估计的偏差和基于谱系和遗传树的算法。皮埃尔·德尔·莫勒尔在1996年的写作中阐述了关于这些粒子算法的数学基础,并对其第一次进行了严格的分析。<ref name="dm9622" /><ref name=":22">{{cite journal|last1 = Del Moral|first1 = Pierre|title = Measure Valued Processes and Interacting Particle Systems. Application to Non Linear Filtering Problems|journal = Annals of Applied Probability|date = 1998|edition = Publications du Laboratoire de Statistique et Probabilités, 96-15 (1996)|volume = 8|issue = 2|pages = 438–495|url = http://projecteuclid.org/download/pdf_1/euclid.aoap/1028903535|doi = 10.1214/aoap/1028903535|citeseerx = 10.1.1.55.5257}}</ref>
 
从1950年到1996年,所有关于顺序蒙特卡罗方法的出版物,包括计算物理和分子化学中引入的删减和重采样蒙特卡罗方法,目前应用于不同的情况的自然和类启发式算法,没有任何一致性证明,也没有讨论估计的偏差和基于谱系和遗传树的算法。皮埃尔·德尔·莫勒尔在1996年的写作中阐述了关于这些粒子算法的数学基础,并对其第一次进行了严格的分析。<ref name="dm9622" /><ref name=":22">{{cite journal|last1 = Del Moral|first1 = Pierre|title = Measure Valued Processes and Interacting Particle Systems. Application to Non Linear Filtering Problems|journal = Annals of Applied Probability|date = 1998|edition = Publications du Laboratoire de Statistique et Probabilités, 96-15 (1996)|volume = 8|issue = 2|pages = 438–495|url = http://projecteuclid.org/download/pdf_1/euclid.aoap/1028903535|doi = 10.1214/aoap/1028903535|citeseerx = 10.1.1.55.5257}}</ref>
   −
20世纪90年代末,'''丹·克里桑 Dan Crisan'''、'''杰西卡·盖恩斯 Jessica Gaines'''和'''特里·利昂斯 Terry Lyons''',<ref name=":42">Crisan, Dan; Gaines, Jessica; Lyons, Terry (1998). "Convergence of a branching particle method to the solution of the Zakai". ''SIAM Journal on Applied Mathematics''. '''58''' (5): 1568–1590. doi:10.1137/s0036139996307371. S2CID 39982562.</ref><ref name=":21">Crisan, Dan; Lyons, Terry (1997). "Nonlinear filtering and measure-valued processes". ''Probability Theory and Related Fields''. '''109''' (2): 217–244. doi:10.1007/s004400050131. S2CID 119809371.</ref><ref name=":23">Crisan, Dan; Lyons, Terry (1999). "A particle approximation of the solution of the Kushner–Stratonovitch equation". ''Probability Theory and Related Fields''. '''115''' (4): 549–578. doi:10.1007/s004400050249. S2CID 117725141.</ref>  以及丹·克里桑、皮埃尔·德尔·莫勒尔和特里·利昂斯也发展了具有不同种群大小的分支型粒子方法。<ref name=":52">{{cite journal|last1 = Crisan|first1 = Dan|last2 = Del Moral|first2 = Pierre|last3 = Lyons|first3 = Terry|title = Discrete filtering using branching and interacting particle systems|journal = Markov Processes and Related Fields|date = 1999|volume = 5|issue = 3|pages = 293–318|url = http://web.maths.unsw.edu.au/~peterdel-moral/crisan98discrete.pdf}}</ref> 2000年,皮埃尔·德尔·莫勒尔、'''爱丽丝·吉奥内 A. Guionnet'''和'''洛朗·米克洛 L. Miclo'''进一步发展了这一领域。<ref name="dmm002" /><ref name="dg99">{{cite journal|last1 = Del Moral|first1 = Pierre|last2 = Guionnet|first2 = Alice|title = On the stability of Measure Valued Processes with Applications to filtering|journal = C. R. Acad. Sci. Paris|date = 1999|volume = 39|issue = 1|pages = 429–434}}</ref><ref name="dg01">{{cite journal|last1 = Del Moral|first1 = Pierre|last2 = Guionnet|first2 = Alice|title = On the stability of interacting processes with applications to filtering and genetic algorithms|journal = Annales de l'Institut Henri Poincaré|date = 2001|volume = 37|issue = 2|pages = 155–194|url = http://web.maths.unsw.edu.au/~peterdel-moral/ihp.ps|doi = 10.1016/s0246-0203(00)01064-5|bibcode=2001AnIHP..37..155D}}</ref>
+
20世纪90年代末,丹·克里桑 Dan Crisan、杰西卡·盖恩斯 Jessica Gaines和特里·利昂斯 Terry Lyons,<ref name=":42">Crisan, Dan; Gaines, Jessica; Lyons, Terry (1998). "Convergence of a branching particle method to the solution of the Zakai". ''SIAM Journal on Applied Mathematics''. '''58''' (5): 1568–1590. doi:10.1137/s0036139996307371. S2CID 39982562.</ref><ref name=":21">Crisan, Dan; Lyons, Terry (1997). "Nonlinear filtering and measure-valued processes". ''Probability Theory and Related Fields''. '''109''' (2): 217–244. doi:10.1007/s004400050131. S2CID 119809371.</ref><ref name=":23">Crisan, Dan; Lyons, Terry (1999). "A particle approximation of the solution of the Kushner–Stratonovitch equation". ''Probability Theory and Related Fields''. '''115''' (4): 549–578. doi:10.1007/s004400050249. S2CID 117725141.</ref>  以及丹·克里桑、皮埃尔·德尔·莫勒尔和特里·利昂斯也发展了具有不同种群大小的分支型粒子方法。<ref name=":52">{{cite journal|last1 = Crisan|first1 = Dan|last2 = Del Moral|first2 = Pierre|last3 = Lyons|first3 = Terry|title = Discrete filtering using branching and interacting particle systems|journal = Markov Processes and Related Fields|date = 1999|volume = 5|issue = 3|pages = 293–318|url = http://web.maths.unsw.edu.au/~peterdel-moral/crisan98discrete.pdf}}</ref> 2000年,皮埃尔·德尔·莫勒尔、爱丽丝·吉奥内 A. Guionnet和洛朗·米克洛 L. Miclo进一步发展了这一领域。<ref name="dmm002" /><ref name="dg99">{{cite journal|last1 = Del Moral|first1 = Pierre|last2 = Guionnet|first2 = Alice|title = On the stability of Measure Valued Processes with Applications to filtering|journal = C. R. Acad. Sci. Paris|date = 1999|volume = 39|issue = 1|pages = 429–434}}</ref><ref name="dg01">{{cite journal|last1 = Del Moral|first1 = Pierre|last2 = Guionnet|first2 = Alice|title = On the stability of interacting processes with applications to filtering and genetic algorithms|journal = Annales de l'Institut Henri Poincaré|date = 2001|volume = 37|issue = 2|pages = 155–194|url = http://web.maths.unsw.edu.au/~peterdel-moral/ihp.ps|doi = 10.1016/s0246-0203(00)01064-5|bibcode=2001AnIHP..37..155D}}</ref>
    
==定义==
 
==定义==
113

个编辑

导航菜单