并证明了任意函数<math>\ell\left(\varepsilon\right)</math>对于所有<math>\varepsilon</math>必须是统一的(Lorentz通过一个不同的参数设置<math>\ell = 1</math>),以使变换形成一个组。在1906年发表的论文的放大版中,庞加莱指出组合<math>x^2+ y^2+ z^2- c^2t^2</math>是不变的。他通过引入<math>ct\sqrt{-1}</math>作为第四个虚坐标,指出Lorentz变换仅仅是四维空间中绕原点的旋转,他使用了四个向量的早期形式。庞加莱在1907年表示对他的新力学的四维重新表述不感兴趣,因为在他看来,将物理学翻译成四维几何的语言需要付出太多的努力才能获得有限的益处。1907年,由赫尔曼·明科夫斯基 Hermann Minkowski得出了这个概念的后果。<ref>{{Citation | author=Poincaré, H. | year=2007 | editor=Walter, S. A. | contribution= 38.3, Poincaré to H. A. Lorentz, May 1905 | title=La correspondance entre Henri Poincaré et les physiciens, chimistes, et ingénieurs |pages=255–257 |place=Basel | publisher=Birkhäuser|contribution-url=http://henripoincarepapers.univ-nantes.fr/chp/text/lorentz3.html}}</ref> | 并证明了任意函数<math>\ell\left(\varepsilon\right)</math>对于所有<math>\varepsilon</math>必须是统一的(Lorentz通过一个不同的参数设置<math>\ell = 1</math>),以使变换形成一个组。在1906年发表的论文的放大版中,庞加莱指出组合<math>x^2+ y^2+ z^2- c^2t^2</math>是不变的。他通过引入<math>ct\sqrt{-1}</math>作为第四个虚坐标,指出Lorentz变换仅仅是四维空间中绕原点的旋转,他使用了四个向量的早期形式。庞加莱在1907年表示对他的新力学的四维重新表述不感兴趣,因为在他看来,将物理学翻译成四维几何的语言需要付出太多的努力才能获得有限的益处。1907年,由赫尔曼·明科夫斯基 Hermann Minkowski得出了这个概念的后果。<ref>{{Citation | author=Poincaré, H. | year=2007 | editor=Walter, S. A. | contribution= 38.3, Poincaré to H. A. Lorentz, May 1905 | title=La correspondance entre Henri Poincaré et les physiciens, chimistes, et ingénieurs |pages=255–257 |place=Basel | publisher=Birkhäuser|contribution-url=http://henripoincarepapers.univ-nantes.fr/chp/text/lorentz3.html}}</ref> |