更改

跳到导航 跳到搜索
删除68字节 、 2021年10月20日 (三) 13:36
无编辑摘要
第135行: 第135行:  
玻尔兹曼分布通常被用来描述粒子的分布,比如原子或分子,在能量状态上的分布情况。如果我们有一个由许多粒子组成的系统,某个粒子处于量子态 i 的概率就等同于当我们从该系统中选择一个随机的粒子并观察它处于什么状态,发现它处于状态 i 的概率。这个概率等于量子态 i 的粒子数除以系统中粒子的总数,即那些占据量子态i的粒子的比例。
 
玻尔兹曼分布通常被用来描述粒子的分布,比如原子或分子,在能量状态上的分布情况。如果我们有一个由许多粒子组成的系统,某个粒子处于量子态 i 的概率就等同于当我们从该系统中选择一个随机的粒子并观察它处于什么状态,发现它处于状态 i 的概率。这个概率等于量子态 i 的粒子数除以系统中粒子的总数,即那些占据量子态i的粒子的比例。
   −
<nowiki><math display="inline"></nowiki>
+
<nowiki>[math]\displaystyle{ {\frac{N_i}{N}}={\frac{e^{- {\varepsilon}_i / k T}}{\sum_{j=1}^{M}{e^{- {\varepsilon}_j / k T}}}} }[/math]</nowiki>
 
  −
<nowiki>p_i={\frac{N_i}{N}}</nowiki>
  −
 
  −
P _ i = { frac { n _ i }{ n }
  −
 
  −
<nowiki>{\sum{p_i {\varepsilon}_i}}</nowiki>
  −
 
  −
 
      
where N<sub>i</sub> is the number of particles in state i and N is the total number of particles in the system. We may use the Boltzmann distribution to find this probability that is, as we have seen, equal to the fraction of particles that are in state i. So the equation that gives the fraction of particles in state i as a function of the energy of that state is
 
where N<sub>i</sub> is the number of particles in state i and N is the total number of particles in the system. We may use the Boltzmann distribution to find this probability that is, as we have seen, equal to the fraction of particles that are in state i. So the equation that gives the fraction of particles in state i as a function of the energy of that state is
  −
<nowiki></math></nowiki>
  −
  −
《数学公式丢失了》
      
N<sub>i</sub> 是位于量子态 i 的粒子数,N是系统中粒子的总数。我们可以用波兹曼分布来求出这个概率,它等于处于量子态i的粒子的比例。所以这个方程给出位于量子态 i 的粒子比例关于这个状态能量的函数<ref name="Atkins, P. W. 2010" />。
 
N<sub>i</sub> 是位于量子态 i 的粒子数,N是系统中粒子的总数。我们可以用波兹曼分布来求出这个概率,它等于处于量子态i的粒子的比例。所以这个方程给出位于量子态 i 的粒子比例关于这个状态能量的函数<ref name="Atkins, P. W. 2010" />。
58

个编辑

导航菜单