第30行: |
第30行: |
| The set of all possible positions r and momenta p is called the phase space of the system; in other words a set of three coordinates for each position coordinate x, y, z, and three more for each momentum component p<sub>x</sub>, p<sub>y</sub>, p<sub>z</sub>. The entire space is 6-dimensional: a point in this space is (r, p) = (x, y, z, p<sub>x</sub>, p<sub>y</sub>, p<sub>z</sub>), and each coordinate is parameterized by time t. The small volume ("differential volume element") is written | | The set of all possible positions r and momenta p is called the phase space of the system; in other words a set of three coordinates for each position coordinate x, y, z, and three more for each momentum component p<sub>x</sub>, p<sub>y</sub>, p<sub>z</sub>. The entire space is 6-dimensional: a point in this space is (r, p) = (x, y, z, p<sub>x</sub>, p<sub>y</sub>, p<sub>z</sub>), and each coordinate is parameterized by time t. The small volume ("differential volume element") is written |
| | | |
− | 系统所有可能的位置'''r'''和动量'''p'''的集合称为系统的相空间,每个位置是三个坐标 x,y,z 的集合,另外有三个坐标表示每个动量分量 ''p<sub>x</sub>, p<sub>y</sub>, p<sub>z</sub>''。整个空间是6维的:空间中的一个点是('''r''', '''p''') = (''x, y, z, p<sub>x</sub>, p<sub>y</sub>, p<sub>z</sub>''),每个坐标由时间 t 参数化。小体积元(“微分体积元”)写作
| + | 系统中所有可能的位置'''r'''和动量'''p'''的集合称为系统的相空间,集合中位置坐标记为 x,y,z,动量坐标记为''p<sub>x,</sub>p<sub>y,</sub>p<sub>z。</sub>''整个空间是6维的:空间中一点可以表示为('''r''', '''p''') = ( ''x, y, z, p<sub>x,</sub> p<sub>y,</sub> p<sub>z</sub>'' ),每个坐标由时间 t 参数化。小体积元(“微分体积元”)写作 |
− | | |
− | | |
− | | |
− | <math> \text{d}^3\mathbf{r}\,\text{d}^3\mathbf{p} = \text{d}x\,\text{d}y\,\text{d}z\,\text{d}p_x\,\text{d}p_y\,\text{d}p_z. </math>
| |
− | | |
− | < math > text { d } ^ 3 mathbf { r } ,text { d } ^ 3 mathbf { p } = text { d } x,text { d } y,text { d } p _ x,text { d } p _ y,text { d } p _ z.数学
| |
− | | |
− | | |
− | | |
| | | |
| + | <math> \text{d}^3\mathbf{r}\,\text{d}^3\mathbf{p} = \text{d}x\,\text{d}y\,\text{d}z\,\text{d}p_x\,\text{d}p_y\,\text{d}p_z. </math>. |
| | | |
| Since the probability of N molecules which all have r and p within <math> \mathrm{d}^3\bf{r}</math> <math> \mathrm{d}^3\bf{p}</math> is in question, at the heart of the equation is a quantity f which gives this probability per unit phase-space volume, or probability per unit length cubed per unit momentum cubed, at an instant of time t. This is a probability density function: f(r, p, t), defined so that, | | Since the probability of N molecules which all have r and p within <math> \mathrm{d}^3\bf{r}</math> <math> \mathrm{d}^3\bf{p}</math> is in question, at the heart of the equation is a quantity f which gives this probability per unit phase-space volume, or probability per unit length cubed per unit momentum cubed, at an instant of time t. This is a probability density function: f(r, p, t), defined so that, |
第67行: |
第59行: |
| | | |
| <math> | | <math> |
− |
| + | |
− | 《数学》
| + | 《数学》 |
− |
| + | |
− |
| + | |
− |
| + | |
− | \begin{align}
| + | \begin{align} |
− |
| + | |
− | 开始{ align }
| + | 开始{ align } |
− |
| + | |
− | is the number of molecules which ''all'' have positions lying within a volume element <math> d^3\bf{r}</math> about '''r''' and momenta lying within a [[momentum space]] element <math> \mathrm{d}^3\bf{p}</math> about '''p''', at time ''t''.<ref>{{Cite book |last=Huang |first=Kerson |year=1987 |title=Statistical Mechanics |url=https://archive.org/details/statisticalmecha00huan_475 |url-access=limited |location=New York |publisher=Wiley |isbn=978-0-471-81518-1 |page=[https://archive.org/details/statisticalmecha00huan_475/page/n65 53] |edition=Second }}</ref> [[Integration (calculus)|Integrating]] over a region of position space and momentum space gives the total number of particles which have positions and momenta in that region:
| + | is the number of molecules which ''all'' have positions lying within a volume element <math> d^3\bf{r}</math> about '''r''' and momenta lying within a [[momentum space]] element <math> \mathrm{d}^3\bf{p}</math> about '''p''', at time ''t''.<ref>{{Cite book |last=Huang |first=Kerson |year=1987 |title=Statistical Mechanics |url=https://archive.org/details/statisticalmecha00huan_475 |url-access=limited |location=New York |publisher=Wiley |isbn=978-0-471-81518-1 |page=[https://archive.org/details/statisticalmecha00huan_475/page/n65 53] |edition=Second }}</ref> [[Integration (calculus)|Integrating]] over a region of position space and momentum space gives the total number of particles which have positions and momenta in that region: |
| | | |
| N & = \int\limits_\mathrm{momenta} \text{d}^3\mathbf{p} \int\limits_\mathrm{positions} \text{d}^3\mathbf{r}\,f (\mathbf{r},\mathbf{p},t) \\[5pt] | | N & = \int\limits_\mathrm{momenta} \text{d}^3\mathbf{p} \int\limits_\mathrm{positions} \text{d}^3\mathbf{r}\,f (\mathbf{r},\mathbf{p},t) \\[5pt] |