− | 可分离性的定义(连续时间实值随机过程的可分性定义可以用其他方式表述。<ref name="Billingsley2008page526">{{cite book|author=Patrick Billingsley|title=Probability and Measure|url=https://books.google.com/books?id=QyXqOXyxEeIC|year=2008|publisher=Wiley India Pvt. Limited|isbn=978-81-265-1771-8|pages=526–527}}</ref><ref name="Borovkov2013page535">{{cite book|author=Alexander A. Borovkov|title=Probability Theory|url=https://books.google.com/books?id=hRk_AAAAQBAJ&pg|year=2013|publisher=Springer Science & Business Media|isbn=978-1-4471-5201-9|page=535}}</ref>)也可以为其他索引集和状态空间而声明,<ref name="GusakKukush2010page22">{{harvtxt|Gusak|Kukush|Kulik|Mishura|2010}}, p. 22</ref>例如在随机场的情况下,索引集和状态空间可以是<math>n</math>维欧几里德空间。<ref name="AdlerTaylor2009page7"/><ref name="Adler2010page14"/> | + | 可分离性的定义(连续时间实值随机过程的可分性定义可以用其他方式表述。<ref name="Billingsley2008page526">{{cite book|author=Patrick Billingsley|title=Probability and Measure|url=https://books.google.com/books?id=QyXqOXyxEeIC|year=2008|publisher=Wiley India Pvt. Limited|isbn=978-81-265-1771-8|pages=526–527}}</ref><ref name="Borovkov2013page535">{{cite book|author=Alexander A. Borovkov|title=Probability Theory|url=https://books.google.com/books?id=hRk_AAAAQBAJ&pg|year=2013|publisher=Springer Science & Business Media|isbn=978-1-4471-5201-9|page=535}}</ref>)也可以为其他索引集和状态空间而声明,<ref name="GusakKukush2010page22">Gusak, Dmytro; Kukush, Alexander; Kulik, Alexey; Mishura, Yuliya; Pilipenko, Andrey (2010). Theory of Stochastic Processes: With Applications to Financial Mathematics and Risk Theory. Springer Science & Business Media. p. 21. ISBN 978-0-387-87862-1.</ref>例如在随机场的情况下,索引集和状态空间可以是<math>n</math>维欧几里德空间。<ref name="AdlerTaylor2009page7"/><ref name="Adler2010page14"/> |