第55行: |
第55行: |
| | | |
| ===一般形式=== | | ===一般形式=== |
− | The general equation can then be written as玻尔兹曼方程的一般形式可以写作: | + | The general equation can then be written as |
| + | |
| + | 玻尔兹曼方程的一般形式可以写作: |
| | | |
| <math> | | <math> |
第70行: |
第72行: |
| </math> | | </math> |
| | | |
− | 其中“force”一词指外界对粒子施加的力(而不是粒子间的作用),“diff”表示粒子扩散,“coll”表示粒子碰撞,指碰撞中粒子间相互的作用力。上述三项的具体形式将会在下文给出。注意,一些作者会使用 '''v''' 表示粒子的速度,而不是动量 '''p。'''这两个物理量可以通过动量的定义'''p''' = m'''v'''联系起来。
| + | 其中“force”一词指外界对粒子施加的力(而不是粒子间的作用),“diff”表示粒子扩散,“coll”表示粒子碰撞,指碰撞中粒子间相互的作用力。上述三项的具体形式将会在下文给出<ref name=":3" />。注意,一些作者会使用 '''v''' 表示粒子的速度,而不是动量 '''p。'''这两个物理量可以通过动量的定义'''p''' = m'''v'''联系起来。 |
| | | |
− | where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the [[diffusion]] of particles, and "coll" is the [[collision]] term – accounting for the forces acting between particles in collisions. Expressions for each term on the right side are provided below<ref>McGraw Hill Encyclopaedia of Physics (2nd Edition), C. B. Parker, 1994, <nowiki>ISBN 0-07-051400-3</nowiki>.</ref>. | + | where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the [[diffusion]] of particles, and "coll" is the [[collision]] term – accounting for the forces acting between particles in collisions. Expressions for each term on the right side are provided below<ref name=":3">McGraw Hill Encyclopaedia of Physics (2nd Edition), C. B. Parker, 1994, <nowiki>ISBN 0-07-051400-3</nowiki>.</ref>. |
| | | |
| Note that some authors use the particle velocity '''v''' instead of momentum '''p'''; they are related in the definition of momentum by '''p''' = ''m'''''v'''. | | Note that some authors use the particle velocity '''v''' instead of momentum '''p'''; they are related in the definition of momentum by '''p''' = ''m'''''v'''. |
第83行: |
第85行: |
| | | |
| | | |
− |
| |
− | A rangle = frac 1n int a f,d ^ 3p
| |
− |
| |
− |
| |
− |
| |
− | :<math>
| |
− |
| |
− | Since the conservation equations involve tensors, the Einstein summation convention will be used where repeated indices in a product indicate summation over those indices. Thus <math>\mathbf{x} \mapsto x_i</math> and <math>\mathbf{p} \mapsto p_i = m w_i</math>, where <math>w_i</math> is the particle velocity vector. Define <math>A(p_i)</math> as some function of momentum <math>p_i</math> only, which is conserved in a collision. Assume also that the force <math>F_i</math> is a function of position only, and that f is zero for <math>p_i \to \pm\infty</math>. Multiplying the Boltzmann equation by A and integrating over momentum yields four terms, which, using integration by parts, can be expressed as
| |
| | | |
| 由于守恒方程涉及张量,爱因斯坦总和约定将用于重复索引在一个积表明总和超过这些索引。因此,mathbf { x }映射到 x i </math > 和 < math > mathbf { p }映射到 p i = m w i </math > ,其中 < math > w i </math > 是粒子速度矢量。定义 a (p _ i) </math > 为动量 < math > p _ i </math > 的某个函数,它在碰撞中是守恒的。还假设力 < math > f _ i </math > 是位置的函数,而且 f 对 < math > p _ i 到 pm </math > 是0。用玻尔兹曼方程乘以 a,再加上动量积分得到4个术语,用部分积分可以表示为 | | 由于守恒方程涉及张量,爱因斯坦总和约定将用于重复索引在一个积表明总和超过这些索引。因此,mathbf { x }映射到 x i </math > 和 < math > mathbf { p }映射到 p i = m w i </math > ,其中 < math > w i </math > 是粒子速度矢量。定义 a (p _ i) </math > 为动量 < math > p _ i </math > 的某个函数,它在碰撞中是守恒的。还假设力 < math > f _ i </math > 是位置的函数,而且 f 对 < math > p _ i 到 pm </math > 是0。用玻尔兹曼方程乘以 a,再加上动量积分得到4个术语,用部分积分可以表示为 |
第360行: |
第354行: |
| | | |
| <math>\langle A \rangle = \frac 1 n \int A f \,d^3p.</math> | | <math>\langle A \rangle = \frac 1 n \int A f \,d^3p.</math> |
| + | |
| + | Since the conservation equations involve tensors, the Einstein summation convention will be used where repeated indices in a product indicate summation over those indices. Thus<math> |
| + | |
| + | <math>\mathbf{x} \mapsto x_i</math> and <math>\mathbf{p} \mapsto p_i = m w_i</math>, where <math>w_i</math> is the particle velocity vector. Define <math>A(p_i)</math> as some function of momentum <math>p_i</math> only, which is conserved in a collision. Assume also that the force <math>F_i</math> is a function of position only, and that f is zero for <math>p_i \to \pm\infty</math>. Multiplying the Boltzmann equation by A and integrating over momentum yields four terms, which, using integration by parts, can be expressed as |
| | | |
| == 方程求解 == | | == 方程求解 == |