更改

跳到导航 跳到搜索
删除27字节 、 2021年11月2日 (二) 11:10
第89行: 第89行:     
where Δ''f'' is the ''total'' change in ''f''. Dividing ({{EquationNote|1}}) by <math> d^3\bf{r}</math>&nbsp;<math> d^3\bf{p}</math>&nbsp;Δ''t'' and taking the limits Δ''t'' → 0 and Δ''f'' → 0, we have{{NumBlk|2=<math>\frac{d f}{d t} = \left(\frac{\partial f}{\partial t} \right)_\mathrm{coll}</math>|3={{EquationRef|2}}}}
 
where Δ''f'' is the ''total'' change in ''f''. Dividing ({{EquationNote|1}}) by <math> d^3\bf{r}</math>&nbsp;<math> d^3\bf{p}</math>&nbsp;Δ''t'' and taking the limits Δ''t'' → 0 and Δ''f'' → 0, we have{{NumBlk|2=<math>\frac{d f}{d t} = \left(\frac{\partial f}{\partial t} \right)_\mathrm{coll}</math>|3={{EquationRef|2}}}}
      
The total [[differential of a function|differential]] of ''f'' is:
 
The total [[differential of a function|differential]] of ''f'' is:
 
+
{{NumBlk|:|<math>\begin{align}
 
+
d f & = \frac{\partial f}{\partial t} \, dt
 +
+\left(\frac{\partial f}{\partial x} \, dx
 +
+\frac{\partial f}{\partial y} \, dy
 +
+\frac{\partial f}{\partial z} \, dz
 +
\right)
 +
+\left(\frac{\partial f}{\partial p_x} \, dp_x
 +
+\frac{\partial f}{\partial p_y} \, dp_y
 +
+\frac{\partial f}{\partial p_z} \, dp_z
 +
\right)\\[5pt]
 +
& = \frac{\partial f}{\partial t}dt +\nabla f \cdot d\mathbf{r} + \frac{\partial f}{\partial \mathbf{p}}\cdot d\mathbf{p} \\[5pt]
 +
& = \frac{\partial f}{\partial t}dt +\nabla f \cdot \frac{\mathbf{p}}{m}dt + \frac{\partial f}{\partial \mathbf{p}}\cdot \mathbf{F} \, dt
 +
\end{align}</math>|{{EquationRef|3}}}}
       
where ∇ is the [[gradient]] operator, '''·''' is the [[dot product]],
 
where ∇ is the [[gradient]] operator, '''·''' is the [[dot product]],
  −
   
:<math>
 
:<math>
   第104行: 第112行:     
</math>
 
</math>
  −
      
is a shorthand for the momentum analogue of ∇, and '''ê'''<sub>''x''</sub>, '''ê'''<sub>''y''</sub>, '''ê'''<sub>''z''</sub> are [[cartesian coordinates|Cartesian]] [[unit vector]]s.
 
is a shorthand for the momentum analogue of ∇, and '''ê'''<sub>''x''</sub>, '''ê'''<sub>''y''</sub>, '''ê'''<sub>''z''</sub> are [[cartesian coordinates|Cartesian]] [[unit vector]]s.
  −
   
===Final statement===
 
===Final statement===
   第263行: 第267行:     
20世纪90年代物理宇宙学,完全协变方法被用于研究宇宙微波背景辐射。更一般地说,对早期宇宙过程的研究往往试图考虑量子力学和广义相对论的影响。
 
20世纪90年代物理宇宙学,完全协变方法被用于研究宇宙微波背景辐射。更一般地说,对早期宇宙过程的研究往往试图考虑量子力学和广义相对论的影响。
{{NumBlk|:|
  −
  −
<math>\begin{align}
  −
  −
d f & = \frac{\partial f}{\partial t} \, dt
  −
  −
+\left(\frac{\partial f}{\partial x} \, dx
  −
  −
+\frac{\partial f}{\partial y} \, dy
  −
  −
  −
+\frac{\partial f}{\partial z} \, dz
  −
  −
\right)
  −
  −
+\left(\frac{\partial f}{\partial p_x} \, dp_x
  −
  −
+\frac{\partial f}{\partial p_y} \, dp_y
  −
  −
+\frac{\partial f}{\partial p_z} \, dp_z
  −
  −
  −
\right)\\[5pt]
  −
  −
& = \frac{\partial f}{\partial t}dt +\nabla f \cdot d\mathbf{r} + \frac{\partial f}{\partial \mathbf{p}}\cdot d\mathbf{p} \\[5pt]
  −
  −
& = \frac{\partial f}{\partial t}dt +\nabla f \cdot \frac{\mathbf{p}}{m}dt + \frac{\partial f}{\partial \mathbf{p}}\cdot \mathbf{F} \, dt
  −
  −
\end{align}</math>
  −
  −
|{{EquationRef|3}}}}
   
== 方程求解 ==
 
== 方程求解 ==
 
this analytical approach provides insight, but is not generally usable in practical problems.
 
this analytical approach provides insight, but is not generally usable in practical problems.
596

个编辑

导航菜单