更改

添加13字节 、 2021年11月2日 (二) 21:13
第50行: 第50行:  
===柯尼希定理和完美图  Kőnig's theorem and perfect graphs ===
 
===柯尼希定理和完美图  Kőnig's theorem and perfect graphs ===
   −
在二分图中,''' 最小顶点覆盖Minimum vertex cover'''(顶点数)等于''' 最大匹配数Maximum matching'''(边数);这就是''' 柯尼希定理Kőnig's theorem'''。<ref>{{citation  | author = Kőnig, Dénes  | title = Gráfok és mátrixok  | journal = Matematikai és Fizikai Lapok  | volume = 38  | year = 1931
+
在二分图中,''' 最小顶点覆盖 Minimum vertex cover'''(顶点数)等于''' 最大匹配数 Maximum matching'''(边数);这就是''' 柯尼希定理 Kőnig's theorem'''。<ref>{{citation  | author = Kőnig, Dénes  | title = Gráfok és mátrixok  | journal = Matematikai és Fizikai Lapok  | volume = 38  | year = 1931
 
   | pages = 116–119}}.</ref><ref>{{citation | last1 = Gross | first1 = Jonathan L. | last2 = Yellen | first2 = Jay | edition = 2nd | isbn = 9781584885054 | page = 568 | publisher = CRC Press | series = Discrete Mathematics And Its Applications | title = Graph Theory and Its Applications
 
   | pages = 116–119}}.</ref><ref>{{citation | last1 = Gross | first1 = Jonathan L. | last2 = Yellen | first2 = Jay | edition = 2nd | isbn = 9781584885054 | page = 568 | publisher = CRC Press | series = Discrete Mathematics And Its Applications | title = Graph Theory and Its Applications
  | url = https://books.google.com/books?id=-7Q_POGh-2cC&pg=PA568 | year = 2005}}.</ref> 该定理的另一种等价形式是,''' 最大独立集Maximum independent set'''(顶点数)加上最大匹配数等于顶点的数量。在任意没有孤立顶点的图中,''' 最小边覆盖Minimum edge cover'''(边数)加上最大匹配数等于顶点数。<ref>{{citation | last1 = Chartrand | first1 = Gary | last2 = Zhang | first2 = Ping | isbn = 9780486483689 | pages = 189–190 | publisher = Courier Dover Publications | title = A First Course in Graph Theory | url = https://books.google.com/books?id=ocIr0RHyI8oC&pg=PA189 | year = 2012}}.</ref>于是,将以上等式与柯尼希定理相结合,得出以下事实:在二分图中,最小边覆盖数值等于最大独立集数值,最小边覆盖数值加上最小顶点覆盖数值等于顶点数。
+
  | url = https://books.google.com/books?id=-7Q_POGh-2cC&pg=PA568 | year = 2005}}.</ref> 该定理的另一种等价形式是,''' 最大独立集 Maximum independent set'''(顶点数)加上最大匹配数等于顶点的数量。在任意没有孤立顶点的图中,''' 最小边覆盖 Minimum edge cover'''(边数)加上最大匹配数等于顶点数。<ref>{{citation | last1 = Chartrand | first1 = Gary | last2 = Zhang | first2 = Ping | isbn = 9780486483689 | pages = 189–190 | publisher = Courier Dover Publications | title = A First Course in Graph Theory | url = https://books.google.com/books?id=ocIr0RHyI8oC&pg=PA189 | year = 2012}}.</ref>于是,将以上等式与柯尼希定理相结合,得出以下事实:在二分图中,最小边覆盖数值等于最大独立集数值,最小边覆盖数值加上最小顶点覆盖数值等于顶点数。
      −
另一类相关特性与''' 完美图Perfect graph'''有关:每个二分图及其补图、线图、线图的补图均为完美图。其实关于二分图的完美性很容易就可以看出来(它们的色数为2,最大的团数同样为2),但是二分图的补图完美性的判定更简单些,且可以看作是柯尼希定理的另一种表述。其实在定义完美图这一概念的初期,它是作为其中之一的论证结果而存在的。<ref>{{citation|title=Modern Graph Theory|volume= 184 |series= Graduate Texts in Mathematics|author=Béla Bollobás|publisher =Springer|year= 1998|isbn= 9780387984889|url=https://books.google.com/books?id=SbZKSZ-1qrwC&pg=PA165|page=165|author-link= Béla Bollobás }}.</ref> 同时完美图线图的补图完美性也是作为柯尼希定理的另一种表述,线图的完美性陈述了比较早期的柯尼希定理,即每一个二分图的着色边,其色数都等于其最大节点度数。
+
另一类相关特性与''' 完美图 Perfect graph'''有关:每个二分图及其补图、线图、线图的补图均为完美图。其实关于二分图的完美性很容易就可以看出来(它们的色数为2,最大的团数同样为2),但是二分图的补图完美性的判定更简单些,且可以看作是柯尼希定理的另一种表述。其实在定义完美图这一概念的初期,它是作为其中之一的论证结果而存在的。<ref>{{citation|title=Modern Graph Theory|volume= 184 |series= Graduate Texts in Mathematics|author=Béla Bollobás|publisher =Springer|year= 1998|isbn= 9780387984889|url=https://books.google.com/books?id=SbZKSZ-1qrwC&pg=PA165|page=165|author-link= Béla Bollobás }}.</ref> 同时完美图线图的补图完美性也是作为柯尼希定理的另一种表述,线图的完美性陈述了比较早期的柯尼希定理,即每一个二分图的着色边,其色数都等于其最大节点度数。
      −
根据''' 强完美图定理Strong perfect graph theorem''',完美图具有类似于二分图的''' 禁止图特征Forbidden graph characterization''':当且仅当它没有奇环的子图时,图才是二分的;当且仅当它没有奇环或其补图作为''' 导出子图Induced subgraph'''时,图才是完美的。二分图及其线图、补图占据了完美图五种基本类别中的四个,它们可以用于证明了强完美图定理。<ref>{{citation | last1 = Chudnovsky | first1 = Maria  | last2 = Robertson | first2 = Neil | last3 = Seymour | first3 = Paul | last4 = Thomas | first4 = Robin | doi = 10.4007/annals.2006.164.51 | issue = 1 | journal = Annals of Mathematics| pages = 51–229
+
根据''' 强完美图定理 Strong perfect graph theorem''',完美图具有类似于二分图的''' 禁止图特征 Forbidden graph characterization''':当且仅当它没有奇环的子图时,图才是二分的;当且仅当它没有奇环或其补图作为''' 导出子图Induced subgraph'''时,图才是完美的。二分图及其线图、补图占据了完美图五种基本类别中的四个,它们可以用于证明了强完美图定理。<ref>{{citation | last1 = Chudnovsky | first1 = Maria  | last2 = Robertson | first2 = Neil | last3 = Seymour | first3 = Paul | last4 = Thomas | first4 = Robin | doi = 10.4007/annals.2006.164.51 | issue = 1 | journal = Annals of Mathematics| pages = 51–229
 
  | title = The strong perfect graph theorem | volume = 164 | year = 2006| citeseerx = 10.1.1.111.7265| arxiv = math/0212070| s2cid = 119151552 }}.</ref>
 
  | title = The strong perfect graph theorem | volume = 164 | year = 2006| citeseerx = 10.1.1.111.7265| arxiv = math/0212070| s2cid = 119151552 }}.</ref>
    +
<br>
    
=== 度相关问题===
 
=== 度相关问题===
7,129

个编辑