第19行: |
第19行: |
| </ref><ref name=":1">Philip T. Gressman & Robert M. Strain (2010). "Global classical solutions of the Boltzmann equation with long-range interactions". ''Proceedings of the National Academy of Sciences''. '''107''' (13): 5744–5749. arXiv:1002.3639. Bibcode:2010PNAS..107.5744G. doi:10.1073/pnas.1001185107. PMC 2851887. <nowiki>PMID 20231489</nowiki>.</ref> | | </ref><ref name=":1">Philip T. Gressman & Robert M. Strain (2010). "Global classical solutions of the Boltzmann equation with long-range interactions". ''Proceedings of the National Academy of Sciences''. '''107''' (13): 5744–5749. arXiv:1002.3639. Bibcode:2010PNAS..107.5744G. doi:10.1073/pnas.1001185107. PMC 2851887. <nowiki>PMID 20231489</nowiki>.</ref> |
| | | |
− | 玻尔兹曼方程是[[wikipedia:Nonlinear system integro-differential equation|非线性积分微分方程 Nonlinear Integro-Differential Equation]],方程中的未知函数是位置和动量在六维空间中的概率密度函数。方程解的存在唯一性仍然是未完全解决的问题,但是一些研究显示解决这一问题是很有希望的。<ref name=":0" /><ref name=":1" />
| + | 玻尔兹曼方程是非线性积分微分方程 Nonlinear Integro-Differential Equation,方程中的未知函数是位置和动量在六维空间中的概率密度函数。方程解的存在唯一性仍然是未完全解决的问题,但是一些研究显示解决这一问题是很有希望的。<ref name=":0" /><ref name=":1" /> |
| | | |
| ==Overview 概述== | | ==Overview 概述== |
第49行: |
第49行: |
| which is a [[multiple integral|6-fold integral]]. While ''f'' is associated with a number of particles, the phase space is for one-particle (not all of them, which is usually the case with [[deterministic]] [[many body problem|many-body]] systems), since only one '''r''' and '''p''' is in question. It is not part of the analysis to use '''r'''<sub>1</sub>, '''p'''<sub>1</sub> for particle 1, '''r'''<sub>2</sub>, '''p'''<sub>2</sub> for particle 2, etc. up to '''r'''<sub>''N''</sub>, '''p'''<sub>''N''</sub> for particle ''N''. | | which is a [[multiple integral|6-fold integral]]. While ''f'' is associated with a number of particles, the phase space is for one-particle (not all of them, which is usually the case with [[deterministic]] [[many body problem|many-body]] systems), since only one '''r''' and '''p''' is in question. It is not part of the analysis to use '''r'''<sub>1</sub>, '''p'''<sub>1</sub> for particle 1, '''r'''<sub>2</sub>, '''p'''<sub>2</sub> for particle 2, etc. up to '''r'''<sub>''N''</sub>, '''p'''<sub>''N''</sub> for particle ''N''. |
| | | |
− | 虽然f与一群粒子有关,但相空间是针对单一粒子进行讨论(对于所有粒子的分析通常是确定性多体系统的情况),因为只有一个r和p是需要考虑的。使用r1, p1代表粒子1,r2, p2代表粒子2,......,直到rN, pN代表粒子N,都不在考虑范围之内。
| + | 这是一个六重积分。虽然f与一群粒子有关,但相空间是针对单一粒子进行讨论(对于所有粒子的分析通常是确定性[[wikipedia:many body problem|多体系统 Many-Body]]的情况),因为只有一个'''r'''和'''p'''是需要考虑的。使用'''r'''<sub>1</sub>, '''p'''<sub>1</sub>代表粒子1,'''r'''<sub>2</sub>, '''p'''<sub>2</sub>代表粒子2,......,直到'''r'''<sub>''N''</sub>, '''p'''<sub>''N''</sub>代表粒子''N'',都不在考虑范围之内。 |
| | | |
| It is assumed the particles in the system are identical (so each has an identical [[mass]] ''m''). For a mixture of more than one [[chemical species]], one distribution is needed for each, see below. | | It is assumed the particles in the system are identical (so each has an identical [[mass]] ''m''). For a mixture of more than one [[chemical species]], one distribution is needed for each, see below. |
第97行: |
第97行: |
| Note that we have used the fact that the phase space volume element <math> d^3\bf{r}</math> <math> d^3\bf{p}</math> is constant, which can be shown using [[Hamilton's equations]] (see the discussion under [[Liouville's theorem (Hamiltonian)|Liouville's theorem]]). However, since collisions do occur, the particle density in the phase-space volume <math> d^3\bf{r}</math> '<math> d^3\bf{p}</math> changes, so | | Note that we have used the fact that the phase space volume element <math> d^3\bf{r}</math> <math> d^3\bf{p}</math> is constant, which can be shown using [[Hamilton's equations]] (see the discussion under [[Liouville's theorem (Hamiltonian)|Liouville's theorem]]). However, since collisions do occur, the particle density in the phase-space volume <math> d^3\bf{r}</math> '<math> d^3\bf{p}</math> changes, so |
| | | |
− | 这里,注意到相空间元 <math> d^3\mathbf{r}\,d^3\mathbf{p}</math> 是恒定的这个事实可以从[[哈密顿方程]](见[[刘维尔定理 (哈密顿力学)|刘维尔定理]])得知。然而,由于存在碰撞,相空间元 <math> d^3\mathbf{r}\,d^3\mathbf{p}</math> 中的粒子密度是可变的,所以有:{{NumBlk|2=<math>\begin{align} | + | 这里,注意到相空间元 <math> d^3\mathbf{r}\,d^3\mathbf{p}</math> 是恒定的这个事实可以从[[wikipedia:Hamilton's equations|哈密顿方程 Hamilton's Equations]](见[[wikipedia:Liouville's theorem (Hamiltonian)|刘维尔定理 Liouville's Theorem(哈密顿力学)]])得知。然而,由于存在碰撞,相空间元 <math> d^3\mathbf{r}\,d^3\mathbf{p}</math> 中的粒子密度是可变的,所以有:{{NumBlk|2=<math>\begin{align} |
| dN_{coll} &= \left ( \frac{\partial f}{\partial t} \right )_{coll}\Delta td^{3}\textbf{r}\, d^{3}\textbf{p}\\[5pt] | | dN_{coll} &= \left ( \frac{\partial f}{\partial t} \right )_{coll}\Delta td^{3}\textbf{r}\, d^{3}\textbf{p}\\[5pt] |
| & = f\left ( \textbf{r}+\frac{\textbf{p}}{m}\Delta t,\textbf{p}+\textbf{F}\Delta t,t+\Delta t \right )\, d^{3}\textbf{r}\, d^{3}\textbf{p}- f(\textbf{r},\textbf{p},t)\, d^{3}\textbf{r}\, d^{3}\textbf{p}\\[5pt] | | & = f\left ( \textbf{r}+\frac{\textbf{p}}{m}\Delta t,\textbf{p}+\textbf{F}\Delta t,t+\Delta t \right )\, d^{3}\textbf{r}\, d^{3}\textbf{p}- f(\textbf{r},\textbf{p},t)\, d^{3}\textbf{r}\, d^{3}\textbf{p}\\[5pt] |