第7行: |
第7行: |
| [[Category:Statistical Mechanics]] | | [[Category:Statistical Mechanics]] |
| | | |
− | <strong><nowiki>Scaling laws </nowiki></strong> are the expression of | + | <strong><nowiki>Scaling laws </nowiki></strong> are the expression of physical principles in the mathematical language of homogeneous functions. |
− | physical principles in the mathematical language of homogeneous | + | |
− | functions. | + | 标度律是物理原理在齐次函数数学语言中的表达。 |
| | | |
| ==Introduction 引言== | | ==Introduction 引言== |
第21行: |
第21行: |
| x, \lambda y, \lambda z, \ldots) \equiv \lambda^{n}f (x, y, z, | | x, \lambda y, \lambda z, \ldots) \equiv \lambda^{n}f (x, y, z, |
| \ldots). </math> | | \ldots). </math> |
− | {{NumBlk|2=<math>f(\lambda | + | 如果对所有<math>\lambda\ ,</math>都满足关系{{NumBlk|2=<math>f(\lambda |
| x, \lambda y, \lambda z, \ldots) \equiv \lambda^{n}f (x, y, z, | | x, \lambda y, \lambda z, \ldots) \equiv \lambda^{n}f (x, y, z, |
| \ldots). </math>|3={{EquationRef|1}}|:}} | | \ldots). </math>|3={{EquationRef|1}}|:}} |
| | | |
− | | + | 则称函数<math>f (x, y, z,\ldots)</math>是变量<math>x,y,z,\ldots</math>的<math>n</math>次齐次函数。For example, <math>ax^2 + bxy + cy^2</math> |
− | For example, <math>ax^2 + bxy + cy^2</math>
| |
| is homogeneous of degree 2 in <math>x</math> and <math>y</math> and of | | is homogeneous of degree 2 in <math>x</math> and <math>y</math> and of |
| the first degree in <math>a, b,</math> and <math>c\ .</math> | | the first degree in <math>a, b,</math> and <math>c\ .</math> |
| + | |
| + | 例如,<math>ax^2 + bxy + cy^2</math>是<math>x</math>和<math>y</math>二次齐次函数,而对<math>a, b,</math><math>c\ .</math>则是一次齐次。 |
| | | |
| By setting <math>\lambda = 1/x</math> in ({{EquationNote|1}}) we have | | By setting <math>\lambda = 1/x</math> in ({{EquationNote|1}}) we have |
第38行: |
第39行: |
| f(x, y, z, \ldots) = x^nf(1, y/x, | | f(x, y, z, \ldots) = x^nf(1, y/x, |
| z/x, \ldots) \equiv x^n\phi(y/x, z/x, \ldots); </math> | | z/x, \ldots) \equiv x^n\phi(y/x, z/x, \ldots); </math> |
− | {{NumBlk|2=<math>f(x, y, z, \ldots) = x^nf(1, y/x, | + | 将<math>\lambda = 1/x</math>带入({{EquationNote|1}}),则有齐次性的另一种表达式,如果<math>f (x, y, z, |
| + | \ldots)</math>满足关系:{{NumBlk|2=<math>f(x, y, z, \ldots) = x^nf(1, y/x, |
| z/x, \ldots) \equiv x^n\phi(y/x, z/x, \ldots);</math>|3={{EquationRef|2}}|:}} | | z/x, \ldots) \equiv x^n\phi(y/x, z/x, \ldots);</math>|3={{EquationRef|2}}|:}} |
| | | |
| + | 则它是<math>x, y, |
| + | z, \ldots</math>的<math>n</math>次齐次函数。 |
| | | |
| i.e., the <math>n^{th}</math> power of <math>x</math> times some | | i.e., the <math>n^{th}</math> power of <math>x</math> times some |