第61行: |
第61行: |
| f}{\partial y}+z\frac{\partial f}{\partial z}+\cdots \equiv nf.</math>|{{EquationRef|3}}}} | | f}{\partial y}+z\frac{\partial f}{\partial z}+\cdots \equiv nf.</math>|{{EquationRef|3}}}} |
| | | |
− | In [[thermodynamics]], if the scale of a system is merely | + | In [https://wiki.swarma.org/index.php/%E7%83%AD%E5%8A%9B%E5%AD%A6 thermodynamics], if the scale of a system is merely |
| increased by a factor <math>\lambda</math> with no change in its | | increased by a factor <math>\lambda</math> with no change in its |
| intensive properties, then all its extensive properties including its | | intensive properties, then all its extensive properties including its |
第67行: |
第67行: |
| and the masses <math>m_1, m_2, \ldots</math> of each of its chemical | | and the masses <math>m_1, m_2, \ldots</math> of each of its chemical |
| constituents are increased by that factor, so the extensive function | | constituents are increased by that factor, so the extensive function |
− | <math>S(E, V, m_1, m_2, \ldots)</math> is homogeneous of degree 1 in its extensive arguments: | + | <math>S(E, V, m_1, m_2, \ldots)</math> is homogeneous of degree 1 in its extensive arguments: |
| | | |
| :<math>\label{eq:4} | | :<math>\label{eq:4} |
第73行: |
第73行: |
| {m_1}, \lambda {m_2}, \ldots ) = \lambda S(E, V, {m_1}, {m_2}, \ldots). | | {m_1}, \lambda {m_2}, \ldots ) = \lambda S(E, V, {m_1}, {m_2}, \ldots). |
| </math> | | </math> |
− | {{NumBlk|:|<math>S(\lambda E, \lambda V, \lambda | + | 在[https://wiki.swarma.org/index.php/%E7%83%AD%E5%8A%9B%E5%AD%A6 热力学 Thermodynamics]中,如果一个系统的标度增加<math>\lambda</math>倍而其强度量不发生变化,则该系统所有化学组分的广度量(如熵<math>S\ ,</math>,能量<math>E\ ,</math>,体积<math>V\ ,</math>,质量<math>m_1, m_2, \ldots</math>等)也增加相同倍数。因此广度函数<math>S(E, V, m_1, m_2, \ldots)</math>在广义论证中满足齐次关系:{{NumBlk|:|<math>S(\lambda E, \lambda V, \lambda |
| {m_1}, \lambda {m_2}, \ldots ) = \lambda S(E, V, {m_1}, {m_2}, \ldots).</math>|{{EquationRef|4}}}} | | {m_1}, \lambda {m_2}, \ldots ) = \lambda S(E, V, {m_1}, {m_2}, \ldots).</math>|{{EquationRef|4}}}} |
− |
| |
| | | |
| With <math>T</math> the temperature, <math>p</math> the | | With <math>T</math> the temperature, <math>p</math> the |
第85行: |
第84行: |
| \frac{1}{T} (E + pV - \mu_1m_1 - \mu_2m_2 - | | \frac{1}{T} (E + pV - \mu_1m_1 - \mu_2m_2 - |
| \cdots) =S, </math> | | \cdots) =S, </math> |
− | {{NumBlk|:|<math>\frac{1}{T} (E + pV - \mu_1m_1 - \mu_2m_2 - | + | 以<math>T</math>,<math>p</math>,<math>\mu_i</math>分别表示温度,压力和不同组分<math>i\ ,</math>的化学势,根据热力学关系 <math>\partial |
| + | S/\partial E = 1/T\ ,</math> <math>\partial S/\partial V = p/T\ ,</math> 和<math>\partial S/\partial m_i = - \mu_i/T\ ;</math>;再由欧拉定理可得:{{NumBlk|:|<math>\frac{1}{T} (E + pV - \mu_1m_1 - \mu_2m_2 - |
| \cdots) =S,</math>|{{EquationRef|5}}}} | | \cdots) =S,</math>|{{EquationRef|5}}}} |
− |
| |
| | | |
| an important identity. Any extensive function <math>X(T, p, m_1, m_2, \ldots)\ ,</math> such as the volume V or the Gibbs free energy <math>E+pV-TS\ ,</math> is homogeneous of the first degree in the <math>m_i</math> at fixed <math>p</math> and <math>T\ ,</math> so | | an important identity. Any extensive function <math>X(T, p, m_1, m_2, \ldots)\ ,</math> such as the volume V or the Gibbs free energy <math>E+pV-TS\ ,</math> is homogeneous of the first degree in the <math>m_i</math> at fixed <math>p</math> and <math>T\ ,</math> so |